1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
open DatalogLib
module ASProg = Datalog_AbstractSyntax.AbstractSyntax.Program
module ASPred = Datalog_AbstractSyntax.AbstractSyntax.Predicate
module ASRule = Datalog_AbstractSyntax.AbstractSyntax.Rule
module Log = UtilsLib.Xlog.Make (struct
let name = "Rgg"
end)
type rule_node = {
rule : ASRule.rule;
adorned_head : Adornment.status list;
position : int;
bound_vars : ASPred.TermSet.t;
free_vars : ASPred.TermSet.t;
}
type vertex =
| Goal of (ASPred.predicate * Adornment.status list)
| Rule of rule_node (**A node is either a Goal or a Rule *)
module Rg_node = struct
type t = vertex
let equal = ( = )
let compare_node node1 node2 =
match (node1, node2) with
| Goal _g, Rule _r -> 1
| Rule _r, Goal _g -> -1
| Goal (p1, bf), Goal (p2, bf2) ->
let id_comparison = ASPred.compare ~with_arguments:false p1 p2 in
if id_comparison = 0 then
Adornment.compare bf bf2
else id_comparison
| Rule r1, Rule r2 ->
let rule_id_comp = ASRule.(r1.rule.id - r2.rule.id) in
if rule_id_comp = 0 then
let pos_comparison = r1.position - r2.position in
if pos_comparison = 0 then
Adornment.compare r1.adorned_head r2.adorned_head
else pos_comparison
else rule_id_comp
let compare = compare_node
let hash = Hashtbl.hash
end
module Rg_graph = Graph.Persistent.Digraph.ConcreteBidirectional (Rg_node)
let pp_node program fmt node =
match node with
| Goal (p, bfs) ->
let predicate_name =
ASPred.PredIdTable.find_sym_from_id p.ASPred.p_id
program.ASProg.pred_table
in
Format.fprintf fmt "%s_%s" predicate_name (Adornment.to_string bfs)
| Rule r ->
let bfs = Adornment.to_string r.adorned_head in
Format.fprintf fmt "Rule %d a position %d_%s" r.rule.ASRule.id r.position bfs
let node_to_dot node program =
match node with
| Goal (p, bfs) ->
let predicate_name =
ASPred.PredIdTable.find_sym_from_id p.ASPred.p_id
program.ASProg.pred_table
in
let pred_without_slash =
String.map
(fun x -> if x = '/' || x = ',' || x = '(' || x = ')' then '_' else x)
predicate_name
in
Printf.sprintf "\t%s_%s" pred_without_slash
(Adornment.to_string bfs)
| Rule r ->
let bfs = Adornment.to_string r.adorned_head in
Printf.sprintf "\tr%dp%d_%s" r.rule.ASRule.id r.position bfs
let edge_to_dot node1 node2 program =
Printf.sprintf "%s -> %s"
(node_to_dot node1 program)
(node_to_dot node2 program)
let graph_to_dot rgg program filename =
let oc = open_out filename in
Printf.fprintf oc "digraph G {\n";
Rg_graph.iter_vertex
(fun x -> Printf.fprintf oc "%s;\n" (node_to_dot x program))
rgg;
Rg_graph.iter_edges
(fun x y -> Printf.fprintf oc "%s;\n" (edge_to_dot x y program))
rgg;
Printf.fprintf oc "}";
close_out oc
let rec make_bound_set_aux acc = function
| [], [] -> acc
| _, []
| [], _ -> failwith "Bug: computing bound set of non compatible contents"
| _ :: tl1, (ASPred.Const _) :: tl2 -> make_bound_set_aux acc (tl1, tl2)
| binding :: tl1, _ :: tl2 when Adornment.Free = binding -> make_bound_set_aux acc (tl1, tl2)
| _ :: tl1, var :: tl2 -> make_bound_set_aux (ASPred.TermSet.add var acc) (tl1, tl2)
let make_bound_set adornment head =
make_bound_set_aux ASPred.TermSet.empty (adornment, head.ASPred.arguments)
let make_free_set rule bound_set =
ASPred.TermSet.diff bound_set (ASRule.get_variables_in_rule rule)
(** Construction of a rule node at the position 0 *)
let build_init_rule_node adornment rule =
let bound_vars = make_bound_set adornment rule.ASRule.lhs in
let new_rule =
Rule
{
rule;
adorned_head = adornment;
position = 0;
bound_vars;
free_vars = make_free_set rule bound_vars;
}
in
new_rule
let build_succ_rule_node rule_node new_context =
match rule_node with
| Rule node ->
let new_rule =
Rule
{
rule = node.rule;
adorned_head = node.adorned_head;
position = node.position + 1;
bound_vars = new_context;
free_vars = make_free_set node.rule new_context;
}
in
new_rule
| _ -> rule_node
let new_nodes prog rgg_node =
match rgg_node with
| Goal (pred, bfs) ->
if ASProg.is_in_idb pred prog then
let matching_rules = ASProg.match_rules pred prog in
ASRule.Rules.fold
(fun r acc ->
let new_node =
build_init_rule_node bfs r
in
(new_node :: acc))
matching_rules
[]
else []
| Rule r ->
let rule = r.rule in
let subgoal_number = rule.ASRule.rhs_num in
if subgoal_number = 0 then []
else
let subgoal, _position = ASRule.get_subgoal rule r.position in
let subgoal_adornment, new_context =
Adornment.adornment ~bound_variables:r.bound_vars subgoal
in
let goal_node =
Goal
( subgoal,
subgoal_adornment
)
in
let result = [ goal_node ] in
if r.position < subgoal_number - 1 then
let succ_node = build_succ_rule_node rgg_node new_context in
succ_node :: result
else result
let rec build_graph prog graph rgg_node =
let () =
Log.debug (fun m -> m "Dealing with node %a" (pp_node prog) rgg_node)
in
let children =
new_nodes prog rgg_node
in
List.fold_left
(fun acc child ->
if not (Rg_graph.mem_vertex acc child) then
let acc' = Rg_graph.add_edge acc rgg_node child in
build_graph prog acc' child
else Rg_graph.add_edge acc rgg_node child)
graph
children
let build_rgg program query =
let empty_rgg = Rg_graph.empty in
let unit_rgg = Rg_graph.add_vertex empty_rgg (Goal query) in
let result = build_graph program unit_rgg (Goal query) in
result