Source file camldiets.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
(***********************************************************
 *                                                         *
 * The code for handling the AVL trees is borrowed from    *
 * the Objective Caml Standard Library Set module.         *
 *                                                         *
 * (c) Xavier Leroy, projet Cristal, INRIA Rocquencourt    *
 *                                                         *
 ***********************************************************)


 module AvlTree = struct

	let bal_const = 1

	type 'a avltree = Empty | Node of 'a * int * 'a avltree * 'a avltree

	let empty = Empty

	let is_empty = function Empty -> true | _ -> false

	let singleton x = Node (x, 1, Empty, Empty)

	(*
	let left = function
	    Empty -> raise Not_found
	|   Node (_, _, l, _) -> l

	let right = function
	    Empty -> raise Not_found
	|	Node (_, _, _, r) -> r
	*)

	let rec min_elt = function
		Empty -> raise Not_found
	|	Node (x,_,Empty,_) -> x
	|	Node (_,_,left,_) -> min_elt left

	let rec max_elt = function
		Empty -> raise Not_found
	|	Node (x,_,_,Empty) -> x
	|	Node (_,_,_,right) -> max_elt right

	(*
	let root = function
	    Empty -> raise Not_found
	|	Node (v, _, _, _) -> v
	*)

	let height = function
	    Empty -> 0
	|	Node (_, h, _, _) -> h

	let height_join left right =
		1 + max (height left) (height right)

	let create x l r =
		Node (x, height_join l r, l, r)

	let balance x l r =
	    let hl = height l in
	    let hr = height r in
	    if hl > hr + bal_const then (
	    	match l with
	      		Empty -> invalid_arg "AvlTree.balance"
	        |	Node(lvx, _, ll, lr) ->
	          		if height ll >= height lr then
	            		create lvx ll (create x lr r)
	            	else (
			            match lr with
	        		    	Empty -> invalid_arg "AvlTree.balance"
	        		    |	Node(lrx, _, lrl, lrr)->
	                		create lrx (create lvx ll lrl) (create x lrr r)
	                )
	    )
	    else if hr > hl + bal_const then (
	    	match r with
	        	Empty -> invalid_arg "AvlTree.balance"
	        |	Node(rvx, _, rl, rr) ->
	        		if height rr >= height rl then
	            		create rvx (create x l rl) rr
	          		else (
	            		match rl with
	              			Empty -> invalid_arg "AvlTree.balance"
	            		|	Node(rlx, _, rll, rlr) ->
	                			create rlx (create x l rll) (create rvx rlr rr)
	         		)
	    )
	    else Node(x, (if hl >= hr then hl + 1 else hr + 1), l, r)

	let rec join v l r =
	    let rec myadd left x = function
	        Empty -> Node(x, 1, Empty, Empty)
	    |   Node(vx, _, l, r) ->
	      		if left then balance vx (myadd left x l) r
	      		        else balance vx l (myadd left x r)
	    in
	    match (l, r) with
	    	(Empty, _) -> myadd true v r
	    |	(_, Empty) -> myadd false v l
	    |	(Node(lx, lh, ll, lr), Node(rx, rh, rl, rr)) ->
		        if lh > rh + bal_const then balance lx ll (join v lr r) else
		        if rh > lh + bal_const then balance rx (join v l rl) rr else
		        create v l r

	let rec take_min = function
		Empty -> raise Not_found
	|	Node (x, _, Empty, right) -> (x, right)
	|	Node (x, _, left, right) -> let (x', left') = take_min left in (x', join x left' right)

	let rec take_max = function
		Empty -> raise Not_found
	|	Node (x, _, left, Empty) -> (x, left)
	|	Node (x, _, left, right) -> let (x', right') = take_max right in (x', join x left right')

	let reroot l r =
        if height l > height r
        then let (i, l') = take_max l in join i l' r
        else if r = Empty then Empty
        else let (i, r') = take_min r in join i l r'

	let rec take_min_iter = function
		Empty -> raise Not_found
	|	Node (x, _, Empty, right) -> (x, right)
	|	Node (x, _, Node(a, _, left, mid), right) ->
			let n = Node (x, height_join mid right, mid, right) in
			take_min_iter (Node (a, height_join left n, left, n))

	let take_min_iter2 = function
		Empty -> (None, Empty)
	|	t -> let (i, s) = take_min_iter t in (Some i, s)

	let rec take_max_iter = function
		Empty -> raise Not_found
	|	Node (x, _, left, Empty) -> (x, left)
	|	Node (x, _, left, Node(a, _, mid, right)) ->
			let n =  Node (x, height_join left mid, left, mid) in
			take_max_iter (Node (a, height_join n right, n, right))

	let take_max_iter2 = function
		Empty -> (None, Empty)
	|	t -> let (i, s) = take_max_iter t in (Some i, s)

	let iter f t =
		let rec iter_aux = function
			(None, _) -> ()
		|	(Some x, rest) -> (
				f x;
				iter_aux (take_min_iter2 rest)
			)
		in
			iter_aux (take_min_iter2 t)

	let fold f t a =
		let rec fold_aux a = function
			(None, _) -> a
		|	(Some x, rest) -> fold_aux (f x a) (take_min_iter2 rest)
	  	in
			fold_aux a (take_min_iter2 t)

	let fold_right f t a =
		let rec fold_aux a = function
			(None, _) -> a
		|	(Some x, rest) -> fold_aux (f x a) (take_max_iter2 rest)
	  	in
			fold_aux a (take_max_iter2 t)

	(*
	let elements t  = fold_right (fun x -> fun xs -> x::xs) t []

	let for_all f t = fold (fun x -> fun y -> (f x) && y) t true

	let exists  f t = fold (fun x -> fun y -> (f x) || y) t false

	let cardinal t = fold (fun _ a -> a + 1) t 0
	*)

	let choose = function
  		Empty -> raise Not_found
    |	Node (x,_,_,_) -> x

end


module type MeasurableType =
  sig
    type t
    val compare : t -> t -> int
	  val pred : t -> t
	  val succ : t -> t
	  val dist : t -> t -> int
  end


module type DietSet = sig
  include Set.S
  val cardinal: t -> int
	val height: t -> int
end


module Make(Ord: MeasurableType) =
  struct
    type elt = Ord.t

    type t = (elt * elt) AvlTree.avltree

	let safe_pred limit x =
  		if Ord.compare limit x < 0 then Ord.pred x else x

	(*
	let safe_succ limit x =
		if Ord.compare limit x > 0 then Ord.succ x else x
	*)

	let max x y =
		if Ord.compare x y > 0 then x else y

	let min x y =
		if Ord.compare x y < 0 then x else y

	let height t =
    	AvlTree.height t

	let find_del_left p =
		let rec find = function
			AvlTree.Empty -> (p,AvlTree.Empty)
	    |	AvlTree.Node ((x,y),_,left,right) ->
				if Ord.compare p (Ord.succ y) > 0 then
				    let (p', right') = find right in
				    (p', AvlTree.join (x, y) left right')
				else if Ord.compare p x < 0 then find left
				else (x, left)
		in
			find

	let find_del_right p =
		let rec find = function
			AvlTree.Empty -> (p,AvlTree.Empty)
	    |	AvlTree.Node ((x,y),_,left,right) ->
				if Ord.compare p (Ord.pred x) < 0 then
				    let (p', left') = find left in
				    (p', AvlTree.join (x, y) left' right)
				else if Ord.compare p y > 0 then find right
				else (y, right)
		in
			find

	let empty = AvlTree.empty

  	let is_empty = AvlTree.is_empty

	let rec mem z = function
		AvlTree.Empty -> false
	|	AvlTree.Node ((x, y), _, left, right) ->
			if Ord.compare z x < 0 then mem z left
			else if Ord.compare z y > 0 then mem z right
			else true

	let min_elt t =
		fst (AvlTree.min_elt t)

	let max_elt t =
		snd (AvlTree.max_elt t)

	let rec add p = function
		AvlTree.Empty -> AvlTree.Node((p, p), 1, AvlTree.Empty, AvlTree.Empty)
	|	(AvlTree.Node((x, y), h, left, right)) as t ->
			if Ord.compare p x >= 0
			then if Ord.compare p y <= 0 then t
				 else if Ord.compare p (Ord.succ y) > 0
				 then AvlTree.join (x, y) left (add p right)
				 else if right = AvlTree.Empty
				 then AvlTree.Node ((x, p), h, left, right)
				 else let ((u, v), r) = AvlTree.take_min right in
					  if Ord.pred u = p
					  then AvlTree.join (x, v) left r
					  else AvlTree.Node ((x, p), h, left, right)
			else if Ord.compare p (Ord.pred x) < 0
			then AvlTree.join (x, y) (add p left) right
			else if left = AvlTree.Empty
			then AvlTree.Node ((p, y), h, left, right)
			else let ((u, v), l) = AvlTree.take_max left in
				 if Ord.succ v = p
				 then AvlTree.join (u, y) l right
				 else AvlTree.Node ((p, y), h, left, right)

    let of_list = List.fold_left (fun x y -> add y x) empty

	let rec insert (p, q) = function
		AvlTree.Empty -> AvlTree.Node((p, q), 1, AvlTree.Empty, AvlTree.Empty)
	|	AvlTree.Node((x, y), _, left, right) ->
			if Ord.compare q (Ord.pred x) < 0
			then AvlTree.join (x, y) (insert (p,q) left) right
			else if Ord.compare p (Ord.succ y) > 0
			then AvlTree.join (x, y) left (insert (p,q) right)
			else let (x',left') = if Ord.compare p x >= 0 then (x,left) else find_del_left p left in
				 let (y',right') = if Ord.compare q y <= 0 then (y,right) else find_del_right q right in
				 AvlTree.join (x', y') left' right'

	let singleton x = AvlTree.singleton (x,x)

	let rec remove z = function
		AvlTree.Empty -> AvlTree.Empty
	|	AvlTree.Node ((x,y),h,left,right) ->
			 let czx = Ord.compare z x in
			 if czx < 0 then AvlTree.join (x, y) (remove z left) right
			 else let cyz = Ord.compare y z in
				  if cyz < 0 then AvlTree.join (x, y) left (remove z right)
				  else if cyz = 0
					   then if czx = 0 then AvlTree.reroot left right
							else AvlTree.Node ((x, Ord.pred y), h, left, right)
					   else if czx = 0 then AvlTree.Node ((Ord.succ x, y), h, left, right)
							else insert (Ord.succ z, y) (AvlTree.Node ((x, Ord.pred z), h, left, right))

	let rec union input stream =
	  	let rec union' input limit head stream =
	  		match head with
	  		    None -> (input, None, AvlTree.Empty)
	  		|   Some (x, _) ->
	  				match input with
	  					AvlTree.Empty -> (AvlTree.Empty, head, stream)
	  				|	AvlTree.Node ((a, b), _, left, right) ->
	  						let (left', head, stream) = if Ord.compare x a < 0 then union' left (Some (Ord.pred a)) head stream
	  						                                           else (left, head, stream)
	  						in
	  							union_helper left' (a, b) right limit head stream
		and union_helper left (a, b) right limit head stream =
	  		match head with
	  		    None -> (AvlTree.join (a,b) left right, None, AvlTree.Empty)
	  		|   Some (x, y) ->
	  				let greater_limit z =
	  					match limit with
	  						None -> false
	  					|	Some u -> Ord.compare z u >= 0
	  				in
	  				if (Ord.compare y a < 0) && (Ord.compare y (Ord.pred a) < 0)
	  				then let left' = insert (x, y) left in
	  				     let (head, stream) = AvlTree.take_min_iter2 stream in
	  				     union_helper left' (a, b) right limit head stream
	  				else if (Ord.compare x b > 0) && (Ord.compare x (Ord.succ b) > 0)
	  				then let (right', head, stream) = union' right limit head stream in
	  				     (AvlTree.join (a,b) left right', head, stream)
	  				else if Ord.compare b y >= 0
	  				then let (head, stream) = AvlTree.take_min_iter2 stream in
	  					 union_helper left (min a x, b) right limit head stream
	  				else if greater_limit y
	  				then (left, Some (min a x, y), stream)
	  				else let (right', head, stream) = union' right limit (Some (min a x, y)) stream in
	  				     (AvlTree.reroot left right', head, stream)
	 	in
	 		if AvlTree.height stream > AvlTree.height input then union stream input
	 		else let (head, stream) = AvlTree.take_min_iter2 stream in
	             let (result, head, stream) = union' input None head stream in
	             match head with
	             	None -> result
	             |	Some i -> AvlTree.join i result stream

  	let iter f t =
		let g (x, y) =
			let z = ref x in
			while Ord.compare !z y < 0 do
				f !z;
				z := Ord.succ !z;
			done;
			f !z
		in
			AvlTree.iter g t


	let fold f t a =
		let rec g (x, y) a =
		  if Ord.compare x y < 0
		  then g (Ord.succ x, y) (f x a)
		  else f x a
		in
			AvlTree.fold g t a

	let fold_right f t a =
		let rec g (x, y) a =
		  if Ord.compare x y < 0
		  then g (x, Ord.pred y) (f y a)
		  else f y a
		in
			AvlTree.fold_right g t a

    let find x t =
        match fold (fun y a -> if Ord.compare x y = 0 then Some y else a) t None with
        |   Some y -> y
        |   None -> raise Not_found

    let map f t =
        fold (fun x -> add (f x)) t empty

	let elements t  =
  		fold_right (fun x -> fun xs -> x::xs) t []

	let for_all f t =
		fold (fun x -> fun y -> (f x) && y) t true

	let exists f t =
		fold (fun x -> fun y -> (f x) || y) t false

	let rec filter f = function
		AvlTree.Empty -> AvlTree.Empty
	|	AvlTree.Node ((x,y),_,left,right) ->
			let z = ref y in
			let z' = ref y in
			let s = ref y in
			let ivs = ref [] in
			let good = ref false in
			while Ord.compare x !z < 0 do
				if (not !good) && (f !z) then (
					good := true;
					s := !z
				)
				else if !good && (not (f !z)) then (
					good := false;
					ivs := (!z', !s)::!ivs
				);
				z' := !z;
				z := Ord.pred !z
			done;
			if (f !z)
			then ivs := (if !good then (!z, !s) else (!z, !z))::!ivs
			else if !good then ivs := (!z', !s)::!ivs;
			match !ivs with
				[] -> AvlTree.reroot (filter f left) (filter f right)
			|   i::is -> List.fold_left (fun x y -> (insert y x)) (AvlTree.join i (filter f left) (filter f right)) is


	let cardinal t =
	    let rec cardinal_aux a = function
	    	[] -> a
	    |	AvlTree.Empty::ts -> cardinal_aux a ts
	    |	(AvlTree.Node ((x,y),_,left,right))::ts -> cardinal_aux (a+(Ord.dist x y)+1) (left::right::ts)
	    in
		    cardinal_aux 0 [t]

	let choose t =
  		fst (AvlTree.choose t)

	let rec split x = function
		AvlTree.Empty ->
			(AvlTree.Empty, false, AvlTree.Empty)
	|	AvlTree.Node((a, b), _, l, r) ->
			let cxa = Ord.compare x a in
			if cxa < 0
			then let (ll, pres, rl) = split x l in (ll, pres, AvlTree.join (a, b) rl r)
			else let cbx = Ord.compare b x in
				 if cbx < 0
				 then let (lr, pres, rr) = split x r in (AvlTree.join (a, b) l lr, pres, rr)
				 else ((if cxa = 0 then l else insert (a, Ord.pred x) l),
					   true,
					   (if cbx = 0 then r else insert (Ord.succ x, b) r))

	let rec inter input stream =
	  	let rec inter' input head stream =
	  		match head with	None -> (AvlTree.Empty, None, AvlTree.Empty)
	  		|   Some (x, _) -> match input with
	  				AvlTree.Empty -> (AvlTree.Empty, head, stream)
	  			|	AvlTree.Node ((a, b), _, left, right) ->
	  					let (left, head, stream) = if Ord.compare x a < 0 then inter' left head stream
	  					                           else (AvlTree.Empty, head, stream) in
	  					inter_help (a, b) right left head stream
	  	and inter_help (a, b) right left head stream =
	  		match head with	None -> (left, None, AvlTree.Empty)
	  		|	Some (x, y) ->
	  			let cya = Ord.compare y a in
	  			if cya < 0 then if stream = AvlTree.Empty then (left, None, AvlTree.Empty)
	  							else let (head, stream) = AvlTree.take_min_iter stream in
	  							     inter_help (a, b) right left (Some head) stream
	  			else let cbx = Ord.compare b x in
	                 if cbx < 0 then let (right, head, stream) = inter' right head stream in
	                                 (AvlTree.reroot left right, head, stream)
	                 else if Ord.compare y (safe_pred y b) >= 0
	                      then let (right, head, stream) = inter' right head stream in
	                           ((AvlTree.join (max x a, min y b) left right), head, stream)
	                      else let left =  (insert (max x a, y) left) in
	                           inter_help (Ord.succ y, b) right left head stream
	 	in
	 		if AvlTree.height stream > AvlTree.height input
	 		then inter stream input
	 		else if stream = AvlTree.Empty then AvlTree.Empty
	             else let (head, stream) = AvlTree.take_min_iter stream in
	                  let (result, _, _) = inter' input (Some head) stream in
	                  result

	let diff input stream =
	  	let rec diff' input head stream =
	  		match head with	None -> (input, None, AvlTree.Empty)
	  		|   Some (x, _) -> match input with
	  				AvlTree.Empty -> (AvlTree.Empty, head, stream)
	  			|	AvlTree.Node ((a, b), _, left, right) ->
	  					let (left, head, stream) = if Ord.compare x a < 0 then diff' left head stream
	  					                           else (left, head, stream) in
	  					diff_helper (a, b) right left head stream
	  	and diff_helper (a, b) right left head stream =
	  		match head with	None -> (AvlTree.join (a, b) left right, None, AvlTree.Empty)
	  		|	Some (x, y) ->
	  			let cya = Ord.compare y a in
	  			if cya < 0 then let (head, stream) = AvlTree.take_min_iter2 stream in
	        				    diff_helper (a, b) right left head stream
	  			else let cbx = Ord.compare b x in
	                 if cbx < 0 then let (right, head, stream) = diff' right head stream in
	                                 (AvlTree.join (a, b) left right, head, stream)
	                 else if Ord.compare a x < 0
	                      then diff_helper (x, b) right ((insert (a, Ord.pred x) left)) head stream
	                      else if Ord.compare y b < 0
	                           then let (head, stream) = AvlTree.take_min_iter2 stream in
	                                diff_helper (Ord.succ y, b) right left head stream
	                           else let (right, head, stream) = diff' right head stream in
	                           		(AvlTree.reroot left right, head, stream)
	 	in
	 		if stream = AvlTree.Empty then input
	        else let (head, stream) = AvlTree.take_min_iter stream in
	             let (result, _, _) = diff' input (Some head) stream in
	            result

	let rec compare t1 t2 =
		if (t1 != AvlTree.Empty) && (t2 != AvlTree.Empty)
		then let ((ix1, iy1), r1) = AvlTree.take_min_iter t1 in
			 let ((ix2, iy2), r2) = AvlTree.take_min_iter t2 in
			 let d = Ord.compare ix1 ix2 in
			 let c = if d != 0 then -d else Ord.compare iy1 iy2 in
			 if c != 0 then c else compare r1 r2
		else if t1 != AvlTree.Empty then 1
		else if t2 = AvlTree.Empty then 0 else -1

	let equal t1 t2 =
		compare t1 t2 = 0

	let subset t1 t2 =
		let rec subset' ((x1, y1), r1) ((x2, y2), r2) =
	  	     if Ord.compare x1 x2 < 0 then false
	  	     else if Ord.compare x1 y2 > 0 then if r2 = AvlTree.Empty then false
	  	                                else subset' ((x1, y1), r1) (AvlTree.take_min_iter r2)
	  	     else let upper = Ord.compare y1 y2 in
	  	     	  if upper < 0 then if r1 = AvlTree.Empty then true
	  	     	                    else subset' (AvlTree.take_min_iter r1) ((x2, y2), r2)
	  	     	  else if upper = 0 then if r1 = AvlTree.Empty || r2 = AvlTree.Empty then r1 = AvlTree.Empty
	  	     	                         else subset' (AvlTree.take_min_iter r1) (AvlTree.take_min_iter r2)
	  	     	  else false
		in
		  	if t1 = AvlTree.Empty || t2 = AvlTree.Empty then t1 = AvlTree.Empty
		  	else subset' (AvlTree.take_min_iter t1) (AvlTree.take_min_iter t2)


	let rec partition f = function
		AvlTree.Empty -> (AvlTree.Empty, AvlTree.Empty)
	|	AvlTree.Node ((x,y),_,left,right) ->
			let z = ref y in
			let z' = ref y in
			let sg = ref y in
			let sb = ref y in
			let ivsg = ref [] in
			let ivsb = ref [] in
			let good = ref false in
			let starters = ref true in
			while Ord.compare x !z < 0 do
				if (not !good) && (f !z) then (
					good := true;
					sg := !z;
					if not !starters then ivsb := (!z', !sb)::!ivsb
				)
				else if !good && (not (f !z)) then (
					good := false;
					sb := !z;
					ivsg := (!z', !sg)::!ivsg
				);
				z' := !z;
				z := Ord.pred !z;
				starters := false
			done;
			if (f !z)
			then (
				ivsg := (if !good then (!z, !sg) else (!z, !z))::!ivsg;
				if not (!good || !starters) then ivsb := (!z', !sb)::!ivsb
			)
			else (
				ivsb := (if not !good then (!z, !sb) else (!z, !z))::!ivsb;
				if !good then ivsg := (!z', !sg)::!ivsg
			);
			let (leftg, leftb) = partition f left in
			let (rightg, rightb) = partition f right in
			((
				match !ivsg with
					[] -> AvlTree.reroot leftg rightg
				|   i::is -> List.fold_left (fun x y -> (insert y x)) (AvlTree.join i leftg rightg) is
			),(
				match !ivsb with
					[] -> AvlTree.reroot leftb rightb
				|   i::is -> List.fold_left (fun x y -> (insert y x)) (AvlTree.join i leftb rightb) is
			))

	let disjoint s1 s2 = AvlTree.is_empty (inter s1 s2)

	let min_elt_opt t = try Some (min_elt t) with Not_found -> None

	let max_elt_opt t = try Some (max_elt t) with Not_found -> None

	let choose_opt t = try Some (choose t) with Not_found -> None

	let find_opt e t = try Some (find e t) with Not_found -> None

    let find_first f t =
        match fold (fun y a -> if f y then Some y else a) t None with
        |   Some y -> y
        |   None -> raise Not_found

	let find_first_opt f t = try Some (find_first f t) with Not_found -> None

	let find_last f t =
		match fold_right (fun y a -> if f y then Some y else a) t None with
		|   Some y -> y
		|   None -> raise Not_found

	let find_last_opt f t = try Some (find_last f t) with Not_found -> None

	let to_list t = elements t

	let filter_map f t = fold (fun x t -> match f x with Some y -> add y t | None -> t) t empty

	let to_seq t = List.to_seq (to_list t)

	let to_rev_seq t = List.to_seq (List.rev (to_list t))

	let to_seq_from x t = to_seq (filter (fun y -> Ord.compare x y <= 0) t)

	let add_seq s t = List.fold_left (fun x y -> add y x) t (List.of_seq s)

	let of_seq s = add_seq s empty

end


module MeasurableInt = struct
	type t = int
	let compare = compare
	let pred = pred
	let succ = succ
	let dist x y = y - x
end