Shared_astSourceThis module defines generic types for types, literals and expressions shared through several of the different ASTs.
Only used by surface
Used for unresolved structs/maps in desugared
Only used by desugared/scopelang
type scope_var_or_subscope = | ScopeVar of ScopeVar.t| SubScope of ScopeVar.t * ScopeName.t * bool Catala_utils.Mark.posDefine a common base type for the expressions in most passes of the compiler
we instantiate them with a polymorphic variant to take advantage of sub-typing. The values aren't actually used.
These types allow to select the features present in any given expression type
'a any is 'a, but adds the constraint that it should be restricted to valid AST kinds
type dcalc_lcalc_features =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes >Features that are common to Dcalc and Lcalc
type ('a, 'b) dcalc_lcalc =
< dcalc_lcalc_features
; defaultTerms : 'a
; exceptions : 'b
; custom : no >This type regroups Dcalc and Lcalc ASTs.
type ('a, 'b, 'c) interpr_kind =
< dcalc_lcalc_features
; defaultTerms : 'a
; exceptions : 'b
; custom : 'c >This type corresponds to the types handled by the interpreter: it regroups Dcalc and Lcalc ASTs and may have custom terms
and naked_typ = | TLit of typ_lit| TTuple of typ list| TStruct of StructName.t| TEnum of EnumName.t| TOption of typ| TArrow of typ list * typ| TArray of typ| TDefault of typ| TAny| TClosureEnvHides an existential type needed for closure conversion
*)type var_def_log = {log_typ : naked_typ;log_io_input : Runtime.io_input;log_io_output : bool;}type log_entry = | VarDef of var_def_logDuring code generation, we need to know the type of the variable being logged for embedding as well as its I/O properties.
*)| BeginCall| EndCall| PosRecordIfTrueBoolUsing empty markings will ensure terms can't be constructed: used for example in interfaces to ensure that they don't contain any expressions
The generic type of AST markings. Using a GADT allows functions to be polymorphic in the marking, but still do transformations on types when appropriate. The Custom case can be used within passes that need to store specific information, e.g. typing
Type of values marked with the above standard mark GADT
Define a common base type for the expressions in most passes of the compiler
type lit = | LBool of bool| LInt of Runtime.integer| LRat of Runtime.decimal| LMoney of Runtime.money| LUnit| LDate of date| LDuration of durationLiterals are the same throughout compilation except for the LEmptyError case which is eliminated midway through.
External references are resolved to strings that point to functions or constants in the end, but we need to keep different references for typing
type 'a glocation = | DesugaredScopeVar : {name : ScopeVar.t Catala_utils.Mark.pos;state : StateName.t option;} -> < scopeVarStates : yes.. > glocation| ScopelangScopeVar : {name : ScopeVar.t Catala_utils.Mark.pos;} -> < scopeVarSimpl : yes.. > glocation| ToplevelVar : {name : TopdefName.t Catala_utils.Mark.pos;} -> < explicitScopes : yes.. > glocationLocations are handled differently in desugared and scopelang
General expressions: groups all expression cases of the different ASTs, and uses a GADT to eliminate irrelevant cases for each one. The 't annotations are also totally unconstrained at this point. The dcalc exprs, for ex ample, are then defined with type naked_expr = dcalc naked_gexpr plus the annotations.
A few tips on using this GADT:
fun (type a) (x: a naked_gexpr) -> ...let rec f: type a . a naked_gexpr -> ...Expr rather than completely defining your recursion manually.The first argument of the base_gexpr type caracterises the "deep" type of the AST, while the second is the shallow type. They are always equal for well-formed AST types, but differentiating them ephemerally allows us to do well-typed recursive transformations on the AST that change its type
and ('a, 'b, 'm) base_gexpr = | ELit : lit -> ('a, < .. >, 'm) base_gexpr| EApp : {f : ('a, 'm) gexpr;args : ('a, 'm) gexpr list;length may be 1 even if arity > 1 in desugared. scopelang performs detuplification, so length = arity afterwards
*)tys : typ list;Set to [] before disambiguation
} -> ('a, < .. >, 'm) base_gexpr| EAppOp : {op : 'a operator Catala_utils.Mark.pos;args : ('a, 'm) gexpr list;tys : typ list;} -> ('a, < .. >, 'm) base_gexpr| EArray : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr| EVar : ('a, 'm) naked_gexpr Bindlib.var -> ('a, _, 'm) base_gexpr| EAbs : {binder : (('a, 'a, 'm) base_gexpr, ('a, 'm) gexpr) Bindlib.mbinder;tys : typ list;} -> ('a, < .. >, 'm) base_gexpr| EIfThenElse : {} -> ('a, < .. >, 'm) base_gexpr| EStruct : {name : StructName.t;fields : ('a, 'm) gexpr StructField.Map.t;} -> ('a, < .. >, 'm) base_gexpr| EInj : {name : EnumName.t;e : ('a, 'm) gexpr;cons : EnumConstructor.t;} -> ('a, < .. >, 'm) base_gexpr| EMatch : {name : EnumName.t;e : ('a, 'm) gexpr;cases : ('a, 'm) gexpr EnumConstructor.Map.t;} -> ('a, < .. >, 'm) base_gexpr| ETuple : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr| ETupleAccess : {e : ('a, 'm) gexpr;index : int;size : int;} -> ('a, < .. >, 'm) base_gexpr| ELocation : 'b glocation -> ('a, < .. > as 'b, 'm) base_gexpr| EScopeCall : {scope : ScopeName.t;args : ('a, 'm) gexpr ScopeVar.Map.t;} -> ('a, < explicitScopes : yes.. >, 'm) base_gexpr| EDStructAmend : {name_opt : StructName.t option;e : ('a, 'm) gexpr;fields : ('a, 'm) gexpr Ident.Map.t;} -> ('a, < syntacticNames : yes.. >, 'm) base_gexpr| EDStructAccess : {name_opt : StructName.t option;e : ('a, 'm) gexpr;field : Ident.t;} -> ('a, < syntacticNames : yes.. >, 'm) base_gexprdesugared has ambiguous struct fields
| EStructAccess : {name : StructName.t;e : ('a, 'm) gexpr;field : StructField.t;} -> ('a, < .. >, 'm) base_gexprResolved struct/enums, after name resolution in desugared
| EExternal : {name : external_ref Catala_utils.Mark.pos;} -> ('a, < explicitScopes : no.. >, 't) base_gexpr| EAssert : ('a, 'm) gexpr -> ('a, < assertions : yes.. >, 'm) base_gexpr| EFatalError : Runtime.error -> ('a, < .. >, 'm) base_gexpr| EDefault : {} -> ('a, < defaultTerms : yes.. >, 'm) base_gexpr| EPureDefault : ('a, 'm) gexpr -> ('a, < defaultTerms : yes.. >, 'm) base_gexpr"return" of a pure term, so that it can be typed as default
| EEmpty : ('a, < defaultTerms : yes.. >, 'm) base_gexpr| EErrorOnEmpty : ('a, 'm) gexpr -> ('a, < defaultTerms : yes.. >, 'm) base_gexpr| ERaiseEmpty : ('a, < exceptions : yes.. >, 'm) base_gexpr| ECatchEmpty : {} -> ('a, < exceptions : yes.. >, 'm) base_gexpr| ECustom : {} -> ('a, < custom : yes.. >, 't) base_gexprA function of the given type, as a runtime OCaml object. The specified types for arguments and result must be the Catala types corresponding to the runtime types of the function.
*)Useful for errors and printing, for example
The annotation is lifted outside of the box for expressions
('a, 'm) gexpr boxed is ('a, 'm) boxed_gexpr. The difference with ('a, 'm) gexpr Bindlib.box is that the annotations is outside of the box, and can therefore be accessed without the need to resolve the box
type ('e, 'b) binder = (('a, 'm) naked_gexpr, 'b) Bindlib.binder constraint 'e = ('a, 'm) gexprThe expressions use the Bindlib library, based on higher-order abstract syntax
type ('e, 'b) mbinder = (('a, 'm) naked_gexpr, 'b) Bindlib.mbinder constraint 'e = ('a, 'm) gexprConstructs scopes and programs on top of expressions. The 'e type parameter throughout is expected to match instances of the gexpr type defined above. Markings are constrained to the mark GADT defined above. Note that this structure is at the moment only relevant for dcalc and lcalc, as scopelang has its own scope structure, as the name implies.
type ('e, 'elt, 'last) bound_list = | Last of 'last| Cons of 'elt * ('e, ('e, 'elt, 'last) bound_list) binderA linked list, but with a binder for each element into the next: x := let a = e1 in e2 is thus Cons (e1, {a. Cons (e2, {x. Nil})})
type scope_let_kind = | DestructuringInputStructlet x = input.field
| ScopeVarDefinitionlet x = error_on_empty e
| SubScopeVarDefinitionlet s.x = fun _ -> e or let s.x = error_on_empty e for input-only subscope variables.
| CallingSubScopelet result = s ({ x = s.x; y = s.x; ...})
| DestructuringSubScopeResultslet s.x = result.x *
| Assertionlet () = assert e
This kind annotation signals that the let-binding respects a structural invariant. These invariants concern the shape of the expression in the let-binding, and are documented below.
type 'e scope_let = {scope_let_kind : scope_let_kind;scope_let_typ : typ;scope_let_expr : 'e;scope_let_pos : Catala_utils.Pos.t;} constraint 'e = ('a any, _) gexprThis type is parametrized by the expression type so it can be reused in later intermediate representations.
A scope let-binding has all the information necessary to make a proper let-binding expression, plus an annotation for the kind of the let-binding that comes from the compilation of a Scopelang.Ast statement.
type 'e scope_body = {scope_body_input_struct : StructName.t;scope_body_output_struct : StructName.t;scope_body_expr : ('e, 'e scope_body_expr) binder;} constraint 'e = ('a any, _) gexprInstead of being a single expression, we give a little more ad-hoc structure to the scope body by decomposing it in an ordered list of let-bindings, and a result expression that uses the let-binded variables. The first binder is the argument of type scope_body_input_struct.
type 'e code_item = | ScopeDef of ScopeName.t * 'e scope_body| Topdef of TopdefName.t * typ * 'etype scope_info = {in_struct_name : StructName.t;out_struct_name : StructName.t;out_struct_fields : StructField.t ScopeVar.Map.t;}In practice, this is a DAG: beware of repeated names
type decl_ctx = {ctx_enums : enum_ctx;ctx_structs : struct_ctx;ctx_scopes : scope_info ScopeName.Map.t;ctx_topdefs : typ TopdefName.Map.t;ctx_struct_fields : StructField.t StructName.Map.t Ident.Map.t;needed for disambiguation (desugared -> scope)
*)ctx_enum_constrs : EnumConstructor.t EnumName.Map.t Ident.Map.t;ctx_scope_index : ScopeName.t Ident.Map.t;only used to lookup scopes (in the root module) specified from the cli
*)ctx_modules : module_tree;}type 'e program = {decl_ctx : decl_ctx;code_items : 'e code_item_list;lang : Catala_utils.Global.backend_lang;module_name : ModuleName.t option;}This module defines module names and path accesses, used to refer to separate compilation units.
Bound lists are non-empty linked lists where each element is a binder onto the next. They are useful for ordered program definitions, like nested let-ins.
Functions handling the code item structures of shared_ast, in particular the scopes
Typing for the default calculus. Because of the error terms, we perform type inference using the classical W algorithm with union-find unification.
Reference interpreter for the default calculus
Optimization passes for default calculus and lambda calculus programs and expressions