Source file CCIntMap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
(* "Fast Mergeable Integer Maps", Okasaki & Gill.
   We use big-endian trees. *)

(** Masks with exactly one bit active *)
module Bit : sig
  type t = private int

  val highest : int -> t
  val min_int : t
  val equal : t -> t -> bool
  val is_0 : bit:t -> int -> bool
  val is_1 : bit:t -> int -> bool
  val mask : mask:t -> int -> int (* zeroes the bit, puts all lower bits to 1 *)
  val lt : t -> t -> bool
  val gt : t -> t -> bool
  val equal_int : int -> t -> bool
end = struct
  type t = int

  let min_int = min_int
  let equal : t -> t -> bool = Stdlib.( = )

  let rec highest_bit_naive x m =
    if x = m then
      m
    else
      highest_bit_naive (x land lnot m) (2 * m)

  let mask_20_ = 1 lsl 20
  let mask_40_ = 1 lsl 40

  let highest x =
    if x < 0 then
      min_int
    else if Sys.word_size > 40 && x > mask_40_ then (
      (* remove least significant 40 bits *)
      let x' = x land lnot (mask_40_ - 1) in
      highest_bit_naive x' mask_40_
    ) else if x > mask_20_ then (
      (* small shortcut: remove least significant 20 bits *)
      let x' = x land lnot (mask_20_ - 1) in
      highest_bit_naive x' mask_20_
    ) else
      highest_bit_naive x 1

  let[@inline] is_0 ~bit x = x land bit = 0
  let[@inline] is_1 ~bit x = x land bit = bit
  let mask ~mask x = x lor (mask - 1) land lnot mask
  (* small endian: let mask_ x ~mask = x land (mask - 1) *)

  let gt a b = b != min_int && (a = min_int || a > b)
  let lt a b = gt b a
  let equal_int : int -> int -> bool = Stdlib.( = )
end

type +'a t =
  | E (* empty *)
  | L of int * 'a (* leaf *)
  | N of int (* common prefix *) * Bit.t (* bit switch *) * 'a t * 'a t

let empty = E

let[@inline] is_empty = function
  | E -> true
  | _ -> false

let[@inline] is_prefix_ ~prefix y ~bit = prefix = Bit.mask y ~mask:bit

(* small endian: let branching_bit_ a _ b _ = lowest_bit_ (a lxor b) *)
let branching_bit_ a b = Bit.highest (a lxor b)

(* TODO use hint in branching_bit_ *)

let check_invariants t =
  (* check that keys are prefixed by every node in their path *)
  let rec check_keys path t =
    match t with
    | E -> true
    | L (k, _) ->
      List.for_all
        (fun (prefix, switch, side) ->
          is_prefix_ ~prefix k ~bit:switch
          &&
          match side with
          | `Left -> Bit.is_0 k ~bit:switch
          | `Right -> Bit.is_1 k ~bit:switch)
        path
    | N (prefix, switch, l, r) ->
      check_keys ((prefix, switch, `Left) :: path) l
      && check_keys ((prefix, switch, `Right) :: path) r
  in
  check_keys [] t

let rec find_exn k t =
  match t with
  | E -> raise Not_found
  | L (k', v) when k = k' -> v
  | L _ -> raise Not_found
  | N (prefix, m, l, r) ->
    if is_prefix_ ~prefix k ~bit:m then
      if Bit.is_0 k ~bit:m then
        find_exn k l
      else
        find_exn k r
    else
      raise Not_found

let find k t = try Some (find_exn k t) with Not_found -> None

let mem k t =
  try
    ignore (find_exn k t);
    true
  with Not_found -> false

let mk_node_ prefix switch l r =
  match l, r with
  | E, o | o, E -> o
  | _ -> N (prefix, switch, l, r)

(* join trees t1 and t2 with prefix p1 and p2 respectively
   (p1 and p2 do not overlap) *)
let join_ t1 p1 t2 p2 =
  let switch = branching_bit_ p1 p2 in
  let prefix = Bit.mask p1 ~mask:switch in
  if Bit.is_0 p1 ~bit:switch then (
    assert (Bit.is_1 p2 ~bit:switch);
    mk_node_ prefix switch t1 t2
  ) else (
    assert (Bit.is_0 p2 ~bit:switch);
    mk_node_ prefix switch t2 t1
  )

let singleton k v = L (k, v)

(* c: conflict function *)
let rec insert_ c k v t =
  match t with
  | E -> L (k, v)
  | L (k', v') ->
    if k = k' then
      L (k, c ~old:v' v)
    else
      join_ t k' (L (k, v)) k
  | N (prefix, switch, l, r) ->
    if is_prefix_ ~prefix k ~bit:switch then
      if Bit.is_0 k ~bit:switch then
        N (prefix, switch, insert_ c k v l, r)
      else
        N (prefix, switch, l, insert_ c k v r)
    else
      join_ (L (k, v)) k t prefix

let add k v t = insert_ (fun ~old:_ v -> v) k v t

let rec remove k t =
  match t with
  | E -> E
  | L (k', _) ->
    if k = k' then
      E
    else
      t
  | N (prefix, switch, l, r) ->
    if is_prefix_ ~prefix k ~bit:switch then
      if Bit.is_0 k ~bit:switch then
        mk_node_ prefix switch (remove k l) r
      else
        mk_node_ prefix switch l (remove k r)
    else
      t
(* not present *)

let update k f t =
  try
    let v = find_exn k t in
    match f (Some v) with
    | None -> remove k t
    | Some v' -> add k v' t
  with Not_found ->
    (match f None with
    | None -> t
    | Some v -> add k v t)

let doubleton k1 v1 k2 v2 = add k1 v1 (singleton k2 v2)

let rec equal ~eq a b =
  Stdlib.( == ) a b
  ||
  match a, b with
  | E, E -> true
  | L (ka, va), L (kb, vb) -> ka = kb && eq va vb
  | N (pa, sa, la, ra), N (pb, sb, lb, rb) ->
    pa = pb && Bit.equal sa sb && equal ~eq la lb && equal ~eq ra rb
  | E, _ | N _, _ | L _, _ -> false

let rec iter f t =
  match t with
  | E -> ()
  | L (k, v) -> f k v
  | N (_, _, l, r) ->
    iter f l;
    iter f r

let rec fold f t acc =
  match t with
  | E -> acc
  | L (k, v) -> f k v acc
  | N (_, _, l, r) ->
    let acc = fold f l acc in
    fold f r acc

let cardinal t = fold (fun _ _ n -> n + 1) t 0

let rec mapi f t =
  match t with
  | E -> E
  | L (k, v) -> L (k, f k v)
  | N (p, s, l, r) -> N (p, s, mapi f l, mapi f r)

let rec map f t =
  match t with
  | E -> E
  | L (k, v) -> L (k, f v)
  | N (p, s, l, r) -> N (p, s, map f l, map f r)

let rec choose_exn = function
  | E -> raise Not_found
  | L (k, v) -> k, v
  | N (_, _, l, _) -> choose_exn l

let choose t = try Some (choose_exn t) with Not_found -> None

(** {2 Whole-collection operations} *)

let rec union f t1 t2 =
  match t1, t2 with
  | E, o | o, E -> o
  | L (k, v1), o2 ->
    insert_ (fun ~old v -> f k v old) k v1 o2 (* insert k, v into o *)
  | o1, L (k, v2) ->
    insert_ (fun ~old v -> f k old v) k v2 o1 (* insert k, v into o *)
  | N (p1, m1, l1, r1), N (p2, m2, l2, r2) ->
    if p1 = p2 && Bit.equal m1 m2 then
      mk_node_ p1 m1 (union f l1 l2) (union f r1 r2)
    else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then
      if Bit.is_0 p2 ~bit:m1 then
        N (p1, m1, union f l1 t2, r1)
      else
        N (p1, m1, l1, union f r1 t2)
    else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then
      if Bit.is_0 p1 ~bit:m2 then
        N (p2, m2, union f t1 l2, r2)
      else
        N (p2, m2, l2, union f t1 r2)
    else
      join_ t1 p1 t2 p2

let rec inter f a b =
  match a, b with
  | E, _ | _, E -> E
  | L (k, v1), o2 ->
    (try
       let v2' = find_exn k o2 in
       L (k, f k v1 v2')
     with Not_found -> E)
  | o1, L (k, v2) ->
    (try
       let v1' = find_exn k o1 in
       L (k, f k v1' v2)
     with Not_found -> E)
  | N (p1, m1, l1, r1), N (p2, m2, l2, r2) ->
    if p1 = p2 && Bit.equal m1 m2 then
      mk_node_ p1 m1 (inter f l1 l2) (inter f r1 r2)
    else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then
      if Bit.is_0 p2 ~bit:m1 then
        inter f l1 b
      else
        inter f r1 b
    else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then
      if Bit.is_0 p1 ~bit:m2 then
        inter f a l2
      else
        inter f a r2
    else
      E

let rec disjoint_union_ t1 t2 : _ t =
  match t1, t2 with
  | E, o | o, E -> o
  | L (k, v), o | o, L (k, v) -> insert_ (fun ~old:_ _ -> assert false) k v o
  | N (p1, m1, l1, r1), N (p2, m2, l2, r2) ->
    if p1 = p2 && Bit.equal m1 m2 then
      mk_node_ p1 m1 (disjoint_union_ l1 l2) (disjoint_union_ r1 r2)
    else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then
      if Bit.is_0 p2 ~bit:m1 then
        mk_node_ p1 m1 (disjoint_union_ l1 t2) r1
      else
        mk_node_ p1 m1 l1 (disjoint_union_ r1 t2)
    else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then
      if Bit.is_0 p1 ~bit:m2 then
        mk_node_ p2 m2 (disjoint_union_ t1 l2) r2
      else
        mk_node_ p2 m2 l2 (disjoint_union_ t1 r2)
    else
      join_ t1 p1 t2 p2

let rec filter f m =
  match m with
  | E -> E
  | L (k, v) ->
    if f k v then
      m
    else
      E
  | N (_, _, l, r) -> disjoint_union_ (filter f l) (filter f r)

let rec filter_map f m =
  match m with
  | E -> E
  | L (k, v) ->
    (match f k v with
    | None -> E
    | Some v' -> L (k, v'))
  | N (_, _, l, r) -> disjoint_union_ (filter_map f l) (filter_map f r)

let rec merge ~f t1 t2 : _ t =
  let merge1 t = filter_map (fun k v -> f k (`Left v)) t
  and merge2 t = filter_map (fun k v -> f k (`Right v)) t
  and add_some k opt m =
    match opt with
    | None -> m
    | Some v -> insert_ (fun ~old:_ _ -> assert false) k v m
  in
  match t1, t2 with
  | E, o -> merge2 o
  | o, E -> merge1 o
  | L (k, v), o ->
    let others = merge2 (remove k o) in
    add_some k
      (try f k (`Both (v, find_exn k o)) with Not_found -> f k (`Left v))
      others
  | o, L (k, v) ->
    let others = merge1 (remove k o) in
    add_some k
      (try f k (`Both (find_exn k o, v)) with Not_found -> f k (`Right v))
      others
  | N (p1, m1, l1, r1), N (p2, m2, l2, r2) ->
    if p1 = p2 && Bit.equal m1 m2 then
      mk_node_ p1 m1 (merge ~f l1 l2) (merge ~f r1 r2)
    else if Bit.gt m1 m2 && is_prefix_ ~prefix:p1 p2 ~bit:m1 then
      if Bit.is_0 p2 ~bit:m1 then
        mk_node_ p1 m1 (merge ~f l1 t2) (merge1 r1)
      else
        mk_node_ p1 m1 (merge1 l1) (merge ~f r1 t2)
    else if Bit.lt m1 m2 && is_prefix_ ~prefix:p2 p1 ~bit:m2 then
      if Bit.is_0 p1 ~bit:m2 then
        mk_node_ p2 m2 (merge ~f t1 l2) (merge2 r2)
      else
        mk_node_ p2 m2 (merge2 l2) (merge ~f t1 r2)
    else
      join_ (merge1 t1) p1 (merge2 t2) p2

(** {2 Conversions} *)

type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option

let add_list t l = List.fold_left (fun t (k, v) -> add k v t) t l
let of_list l = add_list empty l
let to_list t = fold (fun k v l -> (k, v) :: l) t []

let add_iter t iter =
  let t = ref t in
  iter (fun (k, v) -> t := add k v !t);
  !t

let of_iter iter = add_iter empty iter
let to_iter t yield = iter (fun k v -> yield (k, v)) t
let keys t yield = iter (fun k _ -> yield k) t
let values t yield = iter (fun _ v -> yield v) t

let rec add_gen m g =
  match g () with
  | None -> m
  | Some (k, v) -> add_gen (add k v m) g

let of_gen g = add_gen empty g

let to_gen m =
  let st = Stack.create () in
  Stack.push m st;
  let rec next () =
    if Stack.is_empty st then
      None
    else
      explore (Stack.pop st)
  and explore n =
    match n with
    | E -> next () (* backtrack *)
    | L (k, v) -> Some (k, v)
    | N (_, _, l, r) ->
      Stack.push r st;
      explore l
  in
  next

(* E < L < N; arbitrary order for switches *)
let compare ~cmp a b =
  let rec cmp_gen cmp a b =
    match a (), b () with
    | None, None -> 0
    | Some _, None -> 1
    | None, Some _ -> -1
    | Some (ka, va), Some (kb, vb) ->
      if ka = kb then (
        let c = cmp va vb in
        if c = 0 then
          cmp_gen cmp a b
        else
          c
      ) else
        compare ka kb
  in
  cmp_gen cmp (to_gen a) (to_gen b)

let rec add_seq m l =
  match l () with
  | Seq.Nil -> m
  | Seq.Cons ((k, v), tl) -> add_seq (add k v m) tl

let of_seq l = add_seq empty l

let to_seq m =
  (* [st]: stack of alternatives *)
  let rec explore st m () =
    match m with
    | E -> next st ()
    | L (k, v) -> Seq.Cons ((k, v), next st)
    | N (_, _, l, r) -> explore (r :: st) l ()
  and next st () =
    match st with
    | [] -> Seq.Nil
    | x :: st' -> explore st' x ()
  in
  next [ m ]

type 'a tree = unit -> [ `Nil | `Node of 'a * 'a tree list ]

let rec as_tree t () =
  match t with
  | E -> `Nil
  | L (k, v) -> `Node (`Leaf (k, v), [])
  | N (prefix, switch, l, r) ->
    `Node (`Node (prefix, (switch :> int)), [ as_tree l; as_tree r ])

(** {2 IO} *)

type 'a printer = Format.formatter -> 'a -> unit

let pp pp_x out m =
  Format.fprintf out "@[<hov2>intmap {@,";
  let first = ref true in
  iter
    (fun k v ->
      if !first then
        first := false
      else
        Format.pp_print_string out ", ";
      Format.fprintf out "%d -> " k;
      pp_x out v;
      Format.pp_print_cut out ())
    m;
  Format.fprintf out "}@]"

(* Some thorough tests from Jan Midtgaar
   https://github.com/jmid/qc-ptrees
*)