DeclarationsSourceThis module defines the internal representation of global declarations. This includes global constants/axioms, mutual inductive definitions, modules and module types
Non-universe polymorphic mode polymorphism (Coq 8.2+): inductives and constants hiding inductives are implicitly polymorphic when applied to parameters, on the universes appearing in the whnf of their parameters and their conclusion, in a template style.
In truly universe polymorphic mode, we always use RegularArity.
type template_universes = {template_param_levels : Univ.Level.t option list;template_context : Univ.ContextSet.t;}Inlining level of parameters at functor applications. None means no inlining
A constant can have no body (axiom/parameter), or a transparent body, or an opaque one
type ('a, 'opaque) constant_def = | Undef of inlinea global assumption
*)| Def of 'aor a transparent global definition
*)| OpaqueDef of 'opaqueor an opaque global definition
*)| Primitive of CPrimitives.tor a primitive operation
*)type typing_flags = {check_guarded : bool;If false then fixed points and co-fixed points are assumed to be total.
check_positive : bool;If false then inductive types are assumed positive and co-inductive types are assumed productive.
check_universes : bool;If false universe constraints are not checked
conv_oracle : Conv_oracle.oracle;Unfolding strategies for conversion
*)enable_VM : bool;If false, all VM conversions fall back to interpreted ones
enable_native_compiler : bool;If false, all native conversions fall back to VM ones
indices_matter : bool;The universe of an inductive type must be above that of its indices.
*)impredicative_set : bool;Predicativity of the Set universe.
sprop_allowed : bool;If false, error when encountering SProp.
cumulative_sprop : bool;SProp <= Type
*)allow_uip : bool;Allow definitional UIP (breaks termination)
*)}The typing_flags are instructions to the type-checker which modify its behaviour. The typing flags used in the type-checking of a constant are tracked in their constant_body so that they can be displayed to the user.
type 'opaque pconstant_body = {const_hyps : Constr.named_context;younger hyp at top
*)const_univ_hyps : Univ.Instance.t;const_body : (Constr.t, 'opaque) constant_def;const_type : Constr.types;const_relevance : Sorts.relevance;const_body_code : Vmemitcodes.body_code option;const_universes : universes;const_inline_code : bool;const_typing_flags : typing_flags;The typing options which were used for type-checking.
*)}Representation of mutual inductive types in the kernel
Inductive I1 (params) : U1 := c11 : T11 | ... | c1p1 : T1p1 ... with In (params) : Un := cn1 : Tn1 | ... | cnpn : Tnpn
Record information: If the type is not a record, then NotRecord If the type is a non-primitive record, then FakeRecord If it is a primitive record, for every type in the block, we get:
The kernel does not exploit the difference between NotRecord and FakeRecord. It is mostly used by extraction, and should be extruded from the kernel at some point.
type record_info = | NotRecord| FakeRecord| PrimRecord of (Names.Id.t
* Names.Label.t array
* Sorts.relevance array
* Constr.types array)
arraytype one_inductive_body = {mind_typename : Names.Id.t;Name of the type: Ii
mind_arity_ctxt : Constr.rel_context;Arity context of Ii. It includes the context of parameters, that is, it has the form paramdecls, realdecls_i such that Ui (see above) is forall realdecls_i, si for some sort si and such that Ii has thus type forall paramdecls, forall realdecls_i, si. The context itself is represented internally as a list in reverse order [realdecl_i{r_i};...;realdecl_i1;paramdecl_m;...;paramdecl_1].
mind_arity : inductive_arity;Arity sort and original user arity
*)mind_consnames : Names.Id.t array;Names of the constructors: cij
mind_user_lc : Constr.types array;Types of the constructors with parameters: forall params, Tij, where the recursive occurrences of the inductive types in Tij (i.e. in the type of the j-th constructor of the i-th types of the block a shown above) have the form Ind ((mind,0),u), ..., Ind ((mind,n-1),u) for u the canonical abstract instance associated to mind_universes and mind the name to which the inductive block is bound in the environment.
mind_nrealargs : int;Number of expected real arguments of the type (no let, no params)
*)mind_nrealdecls : int;Length of realargs context (with let, no params)
*)mind_kelim : Sorts.family;Highest allowed elimination sort
*)mind_nf_lc : (Constr.rel_context * Constr.types) array;Head normalized constructor types so that their conclusion exposes the inductive type. It includes the parameters, i.e. each component of the array has the form (decls_ij, Ii params realargs_ij) where decls_ij is the concatenation of the context of parameters (possibly with let-ins) and of the arguments of the constructor (possibly with let-ins). This context is internally represented as a list [cstrdecl_ij{q_ij};...;cstrdecl_ij1;paramdecl_m;...;paramdecl_1] such that the constructor in fine has type forall paramdecls, forall cstrdecls_ij, Ii params realargs_ij] with params referring to the assumptions of paramdecls and realargs_ij being the "indices" specific to the constructor.
mind_consnrealargs : int array;Number of expected proper arguments of the constructors (w/o params)
*)mind_consnrealdecls : int array;Length of the signature of the constructors (with let, w/o params)
*)mind_recargs : wf_paths;Signature of recursive arguments in the constructors
*)mind_relevance : Sorts.relevance;mind_nb_constant : int;number of constant constructor
*)mind_nb_args : int;number of no constant constructor
*)mind_reloc_tbl : Vmvalues.reloc_table;}Datas specific to a single type of a block of mutually inductive type
type mutual_inductive_body = {mind_packets : one_inductive_body array;The component of the mutual inductive block
*)mind_record : record_info;The record information
*)mind_finite : recursivity_kind;Whether the type is inductive or coinductive
*)mind_ntypes : int;Number of types in the block
*)mind_hyps : Constr.named_context;Section hypotheses on which the block depends
*)mind_univ_hyps : Univ.Instance.t;Section polymorphic universes.
*)mind_nparams : int;Number of expected parameters including non-uniform ones (i.e. length of mind_params_ctxt w/o let-in)
*)mind_nparams_rec : int;Number of recursively uniform (i.e. ordinary) parameters
*)mind_params_ctxt : Constr.rel_context;The context of parameters (includes let-in declaration)
*)mind_universes : universes;Information about monomorphic/polymorphic/cumulative inductives and their universes
*)mind_template : template_universes option;mind_variance : Univ.Variance.t array option;Variance info, None when non-cumulative.
mind_sec_variance : Univ.Variance.t array option;Variance info for section polymorphic universes. None outside sections. The final variance once all sections are discharged is mind_sec_variance ++ mind_variance.
mind_private : bool option;allow pattern-matching: Some true ok, Some false blocked
*)mind_typing_flags : typing_flags;typing flags at the time of the inductive creation
*)}Functor expressions are forced to be on top of other expressions
type ('ty, 'a) functorize = | NoFunctor of 'a| MoreFunctor of Names.MBId.t * 'ty * ('ty, 'a) functorizeThe fully-algebraic module expressions : names, applications, 'with ...'. They correspond to the user entries of non-interactive modules. They will be later expanded into module structures in Mod_typing, and won't play any role into the kernel after that : they are kept only for short module printing and for extraction.
type 'uconstr with_declaration = | WithMod of Names.Id.t list * Names.ModPath.t| WithDef of Names.Id.t list * 'uconstrtype 'uconstr module_alg_expr = | MEident of Names.ModPath.t| MEapply of 'uconstr module_alg_expr * Names.ModPath.t| MEwith of 'uconstr module_alg_expr * 'uconstr with_declarationA component of a module structure
type structure_field_body = | SFBconst of constant_body| SFBmind of mutual_inductive_body| SFBmodule of module_body| SFBmodtype of module_type_bodyA module structure is a list of labeled components.
Note : we may encounter now (at most) twice the same label in a structure_body, once for a module (SFBmodule or SFBmodtype) and once for an object (SFBconst or SFBmind)
A module signature is a structure, with possibly functors on top of it
A module expression is an algebraic expression, possibly functorized.
and module_expression =
(module_type_body,
(Constr.constr * Univ.AbstractContext.t option) module_alg_expr)
functorizeand module_implementation = | Abstractno accessible implementation
*)| Algebraic of module_expressionnon-interactive algebraic expression
*)| Struct of module_signatureinteractive body
*)| FullStructspecial case of Struct : the body is exactly mod_type
and 'a generic_module_body = {mod_mp : Names.ModPath.t;absolute path of the module
*)mod_expr : 'a;implementation
*)mod_type : module_signature;expanded type
*)mod_type_alg : module_expression option;algebraic type
*)mod_delta : Mod_subst.delta_resolver;quotiented set of equivalent constants and inductive names
*)mod_retroknowledge : 'a module_retroknowledge;}For a module, there are five possible situations:
Declare Module M : T then mod_expr = Abstract; mod_type_alg = Some TModule M := E then mod_expr = Algebraic E; mod_type_alg = NoneModule M : T := E then mod_expr = Algebraic E; mod_type_alg = Some TModule M. ... End M then mod_expr = FullStruct; mod_type_alg = NoneModule M : T. ... End M then mod_expr = Struct; mod_type_alg = Some T And of course, all these situations may be functors or not.A module_type_body is just a module_body with no implementation and also an empty mod_retroknowledge. Its mod_type_alg contains the algebraic definition of this module type, or None if it has been built interactively.
and _ module_retroknowledge = | ModBodyRK : Retroknowledge.action list -> module_implementation
module_retroknowledge| ModTypeRK : unit module_retroknowledgeExtra invariants :
MEwith inside a mod_expr implementation : the 'with' syntax is only supported for module typesMEapply can only be another MEapply or a MEident * the argument of MEapply is now directly forced to be a ModPath.t.