1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
type t = Vernacstate.t
let marshal_in ic : t = Marshal.from_channel ic
let marshal_out oc st = Marshal.to_channel oc st []
let of_coq x = x
let to_coq x = x
let compare (x : t) (y : t) =
let open Vernacstate in
let { synterp = ss1
; interp = { system = is1; lemmas = l1; program = g1; opaques = o1 }
} =
x
in
let { synterp = ss2
; interp = { system = is2; lemmas = l2; program = g2; opaques = o2 }
} =
y
in
if ss1 == ss2 && is1 == is2 && l1 == l2 && g1 == g2 && o1 == o2 then 0 else 1
let equal x y = compare x y = 0
let hash x =
let meaningful, total = (64, 256) in
Hashtbl.hash_param meaningful total x
let mode ~st =
Option.map
(fun _ -> Synterp.get_default_proof_mode ())
st.Vernacstate.interp.lemmas
let parsing ~st = st.Vernacstate.synterp.parsing
module Proof_ = Proof
module Proof = struct
type t = Vernacstate.LemmaStack.t
let to_coq x = x
let equal x y = x == y
let hash x =
let meaningful, total = (128, 256) in
Hashtbl.hash_param meaningful total x
end
let lemmas ~st = st.Vernacstate.interp.lemmas
let program ~st =
NeList.head st.Vernacstate.interp.program |> Declare.OblState.view
let drop_proof ~st =
let open Vernacstate in
let interp =
{ st.interp with
lemmas =
Option.cata
(fun s -> snd @@ Vernacstate.LemmaStack.pop s)
None st.interp.lemmas
}
in
{ st with interp }
let drop_all_proofs ~st =
let open Vernacstate in
let interp = { st.interp with lemmas = None } in
{ st with interp }
let in_state ~token ~st ~f a =
let f a =
Vernacstate.unfreeze_full_state st;
f a
in
Protect.eval ~token ~f a
let in_stateM ~token ~st ~f a =
let open Protect.E.O in
let* () = Protect.eval ~token ~f:Vernacstate.unfreeze_full_state st in
f a
let admit ~st () =
let () = Vernacstate.unfreeze_full_state st in
match st.Vernacstate.interp.lemmas with
| None -> st
| Some lemmas ->
let pm = NeList.head st.Vernacstate.interp.program in
let proof, lemmas = Vernacstate.(LemmaStack.pop lemmas) in
let pm = Declare.Proof.save_admitted ~pm ~proof in
let program = NeList.map_head (fun _ -> pm) st.Vernacstate.interp.program in
let st = Vernacstate.freeze_full_state () in
{ st with interp = { st.interp with lemmas; program } }
let admit ~token ~st = Protect.eval ~token ~f:(admit ~st) ()
let admit_goal ~st () =
let () = Vernacstate.unfreeze_full_state st in
match st.Vernacstate.interp.lemmas with
| None -> st
| Some lemmas ->
let f pf = Declare.Proof.by Proofview.give_up pf |> fst in
let lemmas = Some (Vernacstate.LemmaStack.map_top ~f lemmas) in
{ st with interp = { st.interp with lemmas } }
let admit_goal ~token ~st = Protect.eval ~token ~f:(admit_goal ~st) ()
let count_edges univ =
let univ = UGraph.repr univ in
Univ.Level.Map.fold
(fun _ node acc ->
acc
+
match node with
| UGraph.Alias _ -> 1
| Node m -> Univ.Level.Map.cardinal m)
univ
(Univ.Level.Map.cardinal univ)
let info_universes ~token ~st =
let open Protect.E.O in
let+ univ = in_state ~token ~st ~f:Global.universes () in
let univs = UGraph.domain univ in
let nuniv = Univ.Level.Set.cardinal univs in
let nconst = count_edges univ in
(nuniv, nconst)