123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391open!ImportopenImport_timemoduleTime_ns=Core_time_nsmoduleZone=Time.ZonemoduletypeGen=sigtype'at(** [bound] is the type of points in the interval (and therefore of the bounds).
[bound] is instantiated in two different ways below: in [module type S] as a
monotype and in [module type S1] as ['a]. *)type'abound(** [create l u] returns the interval with lower bound [l] and upper bound [u], unless
[l > u], in which case it returns the empty interval. *)valcreate:'abound->'abound->'atvalempty:'atvalintersect:'at->'at->'atvalis_empty:'at->boolvalis_empty_or_singleton:'at->bool(*_ If you are looking for a simple interval type where the bounds are not optional,
consider Min_max_pair.t. *)valbounds:'at->('abound*'abound)optionvallbound:'at->'aboundoptionvalubound:'at->'aboundoptionvalbounds_exn:'at->('abound*'abound)vallbound_exn:'at->'aboundvalubound_exn:'at->'abound(** [convex_hull ts] returns an interval whose upper bound is the greatest upper bound
of the intervals in the list, and whose lower bound is the least lower bound of the
list.
Suppose you had three intervals [a], [b], and [c]:
{v
a: ( )
b: ( )
c: ( )
hull: ( )
v}
In this case the hull goes from [lbound_exn a] to [ubound_exn c].
*)valconvex_hull:'atlist->'atvalcontains:'at->'abound->boolvalcompare_value:'at->'abound->[`Below|`Within|`Above|`Interval_is_empty](** [bound t x] returns [None] iff [is_empty t]. If [bounds t = Some (a, b)], then
[bound] returns [Some y] where [y] is the element of [t] closest to [x]. I.e.:
{v
y = a if x < a
y = x if a <= x <= b
y = b if x > b
v}
*)valbound:'at->'abound->'aboundoption(** [is_superset i1 of_:i2] is whether i1 contains i2. The empty interval is
contained in every interval. *)valis_superset:'at->of_:'at->boolvalis_subset:'at->of_:'at->bool(** [map t ~f] returns [create (f l) (f u)] if [bounds t = Some (l, u)], and [empty] if
[t] is empty. Note that if [f l > f u], the result of [map] is [empty], by the
definition of [create].
If you think of an interval as a set of points, rather than a pair of its bounds,
then [map] is not the same as the usual mathematical notion of mapping [f] over that
set. For example, [map ~f:(fun x -> x * x)] maps the interval [[-1,1]] to [[1,1]],
not to [[0,1]]. *)valmap:'at->f:('abound->'bbound)->'bt(** [are_disjoint ts] returns [true] iff the intervals in [ts] are pairwise disjoint. *)valare_disjoint:'atlist->bool(** Returns true iff a given set of intervals would be disjoint if considered as open
intervals, e.g., [(3,4)] and [(4,5)] would count as disjoint according to this
function. *)valare_disjoint_as_open_intervals:'atlist->bool(** Assuming that [ilist1] and [ilist2] are lists of disjoint intervals, [list_intersect
ilist1 ilist2] considers the intersection [(intersect i1 i2)] of every pair of
intervals [(i1, i2)], with [i1] drawn from [ilist1] and [i2] from [ilist2],
returning just the non-empty intersections. By construction these intervals will be
disjoint, too. For example:
{[
let i = Interval.create;;
list_intersect [i 4 7; i 9 15] [i 2 4; i 5 10; i 14 20];;
[(4, 4), (5, 7), (9, 10), (14, 15)]
]}
Raises an exception if either input list is non-disjoint.
*)vallist_intersect:'atlist->'atlist->'atlist(** Returns true if the intervals, when considered as half-open intervals, nestle up
cleanly one to the next. I.e., if you sort the intervals by the lower bound,
then the upper bound of the [n]th interval is equal to the lower bound of the
[n+1]th interval. The intervals do not need to partition the entire space, they just
need to partition their union.
*)valhalf_open_intervals_are_a_partition:'atlist->boolendmoduletypeGen_set=sigtype'attype'aboundtype'ainterval(** An interval set is a set of nonempty disjoint intervals. *)(** [create] creates an interval set containing intervals whose lower and upper bounds
are given by the pairs passed to the function. It is an error if the pairs overlap.
*)valcreate:('abound*'abound)list->'at(** [create_from_intervals] creates an interval set. Empty intervals are dropped. It is
an error if the nonempty intervals are not disjoint. *)valcreate_from_intervals:'aintervallist->'atvalcontains:'at->'abound->bool(** [contains_set] returns true iff for every interval in the contained set, there
exists an interval in the container set that is its superset.
*)valcontains_set:container:('at)->contained:('at)->bool(** The largest and smallest element of the interval set, respectively. Raises
Invalid_argument on empty sets. *)valubound_exn:'at->'aboundvallbound_exn:'at->'aboundvalubound:'at->'aboundoptionvallbound:'at->'aboundoptionendmoduletypeS=sigtypet[@@derivingbin_io,sexp,compare,hash]typeboundincludeGenwithtype'at:=twithtype'abound:=bound(** @inline *)(** [create] has the same type as in [Gen], but adding it here prevents a type-checker
issue with nongeneralizable type variables. *)valcreate:bound->bound->ttype'apoly_tvalto_poly:t->boundpoly_ttype'apoly_setmoduleSet:sigtypet[@@derivingbin_io,sexp]includeGen_setwithtype'at:=twithtype'abound:=bound(** @inline *)valto_poly:t->boundpoly_setendwithtype'ainterval:=tendmoduletypeS1=sig(** This type [t] supports bin-io and sexp conversion by way of the
[[@@deriving bin_io, sexp]] extensions, which inline the relevant function
signatures (like [bin_read_t] and [t_of_sexp]). *)type'at[@@derivingbin_io,sexp,compare,hash]includeGenwithtype'at:='atwithtype'abound:='a(** @inline *)moduleSet:sigtype'at[@@derivingbin_io,sexp]includeGen_setwithtype'at:='atwithtype'abound:='a(** @inline *)endwithtype'ainterval:='atendmoduletypeS_time=sigmoduleTime:sigtypetmoduleOfday:sigtypetendendincludeSwithtypebound=Time.t(** @open *)(** [create_ending_after ?zone (od1, od2) ~now] returns the smallest interval [(t1 t2)]
with minimum [t2] such that [t2 >= now], [to_ofday t1 = od1], and [to_ofday t2 =
od2]. If a zone is specified, it is used to translate [od1] and [od2] into times,
otherwise the machine's time zone is used.
It is not guaranteed that the interval will contain [now]: for instance if it's
11:15am, [od1] is 12pm, and [od2] is 2pm, the returned interval will be 12pm-2pm
today, which obviously doesn't include 11:15am. In general [contains (t1 t2) now]
will only be true when now is between [to_ofday od1] and [to_ofday od2].
You might want to use this function if, for example, there's a daily meeting from
10:30am-11:30am and you want to find the next instance of the meeting, relative to
now. *)valcreate_ending_after:?zone:Zone.t->Time.Ofday.t*Time.Ofday.t->now:Time.t->t(** [create_ending_before ?zone (od1, od2) ~ubound] returns the smallest interval [(t1
t2)] with maximum [t2] such that [t2 <= ubound], [to_ofday t1 = od1], and [to_ofday
t2 = od2]. If a zone is specified, it is used to translate [od1] and [od2] into
times, otherwise the machine's time zone is used.
You might want to use this function if, for example, there's a lunch hour from
noon to 1pm and you want to find the first instance of that lunch hour (an interval)
before [ubound]. The result will either be on the same day as [ubound], if
[to_ofday ubound] is after 1pm, or the day before, if [to_ofday ubound] is any
earlier. *)valcreate_ending_before:?zone:Zone.t->Time.Ofday.t*Time.Ofday.t->ubound:Time.t->tend(** Module for simple closed intervals over arbitrary types. Used by calling the
{{!module:Core.Interval.Make}[Make]} functor with a type that satisfies
{{!module:Base.Comparable}[Comparable]} (for correctly ordering elements).
Note that the actual interface for intervals is in
{{!modtype:Core__.Interval_intf.Gen}[Interval_intf.Gen]}, following a Core pattern of
defining an interface once in a [Gen] module, then reusing it across monomorphic ([S])
and polymorphic ([S1], [S2], ... [SN]) variants, where [SN] denotes a signature of N
parameters. Here, [S1] is included in this module because the signature of one ['a]
parameter is the default.
See the documentation of {{!module:Core.Interval.Make}[Interval.Make]} for a more
detailed usage example. *)moduletypeInterval=sig(**
{2 Intervals using polymorphic compare}
This part of the interface is for polymorphic intervals, which are well ordered by
polymorphic compare. Using this with types that are not (like sets) will lead to crazy
results.
*)includeS1(** @inline *)(** {2 Type-specialized intervals}
The module type [S] is used to define signatures for intervals over a specific type,
like [Interval.Ofday] (whose bounds are [Time.Ofday.t]) or [Interval.Float], whose
bounds are floats.
Note the heavy use of destructive substitution, which removes the redefined type or
module from the signature. This allows for clean type constraints in codebases, like
Core's, where there are lots of types going by the same name (e.g., "t").
*)(** {3 Signatures }
The following signatures are used for specifying the types of the type-specialized
intervals.
*)moduletypeS1=S1moduletypeS=Swithtype'apoly_t:='atwithtype'apoly_set:='aSet.t(**
[S_time] is a signature that's used below to define the interfaces for [Time] and
[Time_ns] without duplication.
*)moduletypeS_time=S_timewithtype'apoly_t:='atwithtype'apoly_set:='aSet.t(** {3 Specialized interval types} *)moduleOfday:Swithtypebound=Time.Ofday.tmoduleOfday_ns:Swithtypebound=Time_ns.Ofday.tmoduleTime:S_timewithmoduleTime:=Timeandtypet=Time.ttmoduleTime_ns:S_timewithmoduleTime:=Time_nsandtypet=Time_ns.ttmoduleFloat:Swithtypebound=Float.tmoduleInt:sigincludeSwithtypebound=Int.t(** @open *)includeContainer.S0withtypet:=twithtypeelt:=boundincludeBinary_searchable.Swithtypet:=twithtypeelt:=bound(**/**)(*_ See the Jane Street Style Guide for an explanation of [Private] submodules:
https://opensource.janestreet.com/standards/#private-submodules *)modulePrivate:sigvalget:t->int->intendend(** [Interval.Make] is a functor that takes a type that you'd like to create intervals for
and returns a module with functions over intervals of that type.
For example, suppose you had a [Percent.t] type and wanted to work with intervals over
it, i.e., inclusive ranges like 40-50% or 0-100%. You would create your
[Percent_interval] module by calling:
{[module Percent_interval = Interval.Make(Percent)]}
You now have a module with lots of functionality ready to use. For instance you could
call [Percent_interval.empty] to create an empty interval, or:
{[Percent_interval.create (Percent.of_percentage 3) (Percent.of_percentage 30)]}
to get an actual interval that ranges from [3%] to [30%]. You can then ask questions
of this interval, like whether it's a {{!val:is_subset} subset} of another interval or
whether it {!val:contains} a particular value.
NB. In order to use the [Interval.Make] functor, your type must satisfy
Comparable and support bin-io and s-expression conversion. At a minimum, then,
[Percent] must look like this:
{[
module Percent = struct
module T = struct
type t = float [@@deriving bin_io, compare, sexp]
end
include T
include Comparable.Make_binable(T)
end
]}
*)moduleMake(Bound:sigtypet[@@derivingbin_io,sexp,hash]includeComparable.Swithtypet:=tend):Swithtypebound=Bound.t(**
[Stable] is used to build stable protocols. It ensures backwards compatibility by
checking the sexp and bin-io representations of a given module. Here it's also applied
to the [Float], [Int], [Time], [Time_ns], and [Ofday] intervals.
*)moduleStable:sigmoduleV1:sigtypenonrec'at='at[@@derivingbin_io,compare,sexp]moduleFloat:Stablewithtypet=Float.tmoduleInt:Stablewithtypet=Int.tmoduleTime:Stablewithtypet=Time.tmoduleTime_ns:Stablewithtypet=Time_ns.tmoduleOfday:Stablewithtypet=Ofday.t(**/**)(*_ See the Jane Street Style Guide for an explanation of [Private] submodules:
https://opensource.janestreet.com/standards/#private-submodules *)modulePrivate:sigtype'at=|Intervalof'a*'a|Empty[@@derivingcompare,variants]valto_float:floatt->Float.tvalto_int:intt->Int.tvalto_ofday:Core_kernel.Time.Ofday.tt->Ofday.tvalto_time:Core_kernel.Time.tt->Time.tendendendend