As Core_kernel is built on top of Base, you might want to have a look at Base's changelog.
failwithp in favor of failwiths, and made failwiths's ~here argument required.Fqueue to make it consistent with Queue and Fdeque. top, top_exn, and discard_exn remain as deprecated aliases to peek, peek_exn, and drop_exn.Fqueue.{enqueue_top, bot_exn, bot}.Obj_array in favor of Uniform_array.Std module.Digit_string_helpers.read_int63_decimal.List.zip_with_remainder which zips as many elements as possible and then returns the unzipped remained of the longest input, if the input lists have different lengths.Bigbuffer.add_bin_prot to append the bin-protted representation of a value at the end of the buffer.Base.Buffer.Quickcheck module.Timing_wheel_ns.alarm_upper_bound in favor of Timing_wheel_ns.max_allowed_alarm_time.Array.replace arr i ~f in favor of using arr.(i) <- (f (arr.(i)))Array and Set modules.Int_replace_polymorphic_compare in favor of Int.Replace_polymorphic_compare.Bigstring.unsafe_resize to allow reallocating in place.Splittable_random to its own library. Available at http://github.com/janestreet/splittable_randomTime.*.Stable, leaving Time.Stable as the only submodule that exports stable conversions. Clients of Time should refer to stable modules as Time.Stable.X where they were previously using Time.X.Stable.Md5.digest_bin_prot. This gives an easy way to write t -> Md5.t for any Binable value.Stable_comparable.V1 module type.fold_until's interface: instead of returning a Finished_or_stopped_early.t it now takes a finish callback.Float.to_string as to_string_12, to reflect its 12-digit precision. And introduce a new Float.to_string with the behavior of Float.to_string_round_trippable.Set_once, including requiring %here at calls to get_exn, set, and set_exnQuickcheck's interface for giving explicit length values or ranges for random lists and strings.Stable_workaround modules that are no longer necessary since we upgraded to OCaml 4.04.Date.add_days_skipping, a generalization of add_business_days and add_weekdaysTotal_map.data, that just calls Map.data on the underlying mapArray.empty, which was already deprecated in Base.Gc.add_finalizer_last, which is like add_finalizer, except that the function is only called when the value has become unreachable for the last time.Maybe_bound: [@@deriving bin_io] and module Stable.Optional_syntax, with interfaces S, S1, and S2, used by modules that expose an Optional_syntax submodule for use with match%optional.Weak_hashtbl to use Gc.add_finalizer_last, rather than Weak_pointer's emulation based on Ephemeron.Weak_pointer directly in terms of OCaml's Weak module, rather than using Ephemeron.Bigstring.map_file to Core, since it depends on Unix.Heap.merge_pairs by removing a closure allocation.String_id's no-whitespace-on-edge check for String_id.Set etc.Version_util to store build_time as a Time.t rather than using a Date.t and a Time.Ofday.t.String_id.Make_with_validate, so that we can create identifiers that perform custom validation on creation.Core_kernel.print_s, for pretty printing a sexp to stdout. (jane/Core.print_s)Bigstring a number of bounds-checked versions of functions dealing with integers, corresponding to existing unsafe versions.String.take_while and rtake_while.Heap.sexp_of_t and Heap.Removable.sexp_of_t.Md5 module, a wrapper around OCaml's Digest module.Time, in Time.Stable.With_utc_sexp.V2.Univ_map, exposed Type_equal.Id.t for Key.t types.Gc.Stat.sexp_of_t so it no longer drops precision in the minor_words, promoted_words, and major_words fields.Map.merge_skewed function that only traverses one of its arguments, unlike Map.merge, which traverses both.Obj_array inlining.Deque.clear to only walk the queue, rather than the entire backing array.Bus by adding writeN functions that can be inlined.Bus's variable arity write function, making write be for arity-1 buses only, with write2, write3, and write4 for other arities.Core_kernel_stable.Time, which includes stable types for Time.Span.t and Time.With_utc_sexp.t..Unique_id.Id, changed Hashable to Hashable.S_binable.Core_kernel.ifprintf.Queue.Stable.Bus.create's allow_subscription_after_first_write argument to on_subscription_after_first_write and added a choice that causes the bus to remember the last value written to it and send it to new subscribers.Flags.subset to is_subset, for consistency.Core_kernel.Bytes be an extension of Base.Bytes.bytes functions to Bigstring and Bigbuffer.Host_and_port.t as a record type.Total_map.for_all.Date.add_years, which just calls Date.add_months d 12*n.Time.Ofday.of_string parsing into a separate module so that it can eventually be shared between Time and Time_ns. Made of_string reject nonsense inputs (e.g 0:00:0 and 1:-0:3e1).Time.Ofday.to_string to avoid using to_parts, improving its performance.Time.Span.Parts and Time_ns.Span.Parts the same by adding the ns field to Time.Span.Parts. Updated create functions for Span and Ofday to accept ?ns. Fixed Time_ns.Ofday.create to be precise rather than round-tripping through Time.Ofday.Pool, Thread_safe_queue, Time_ns, and Timing_wheel_ns by moving some error branches into [@inline never] functions.Heap.Removable into Heap.Heap.remove's implementation to use the usual pairing-heap delete algorithm, which has amortized O(log(n)) complexity the same complexity as removing the min value, without the memory problem of the current implementation.Heap.Unsafe, with non-allocating alternatives to Elt.t.Time's and Time_ns's Ofday.end_of_day value, and added start_of_next_day and approximate_end_of_day as replacements.blit functions that mutate strings.Core_kernel to -safe-string.String's quickcheck generator to use size as an upper bound.Sequence.merge_all, which uses Fheap.Identifiable.S_plain, which is like Identifiable.S but does not export t_of_sexp.Bigsubstring's and Substring's of_string and of_bigstring functions. One should use create for sharing.Date.Days module, a date representation optimized for linear arithmetic (e.g. add_days) rather than for extracting year/month/day.Hashtbl, Hash_set, Map, and Set generic creation functions to use a first-class module like Base rather than a comparator or hashable.Quickcheck.test_or_error, an Or_error-based version of test.Time.Zone.shift_epoch_time into absolute_time_of_relative_time and relative_time_of_absolute_time to make its uses clearer.String.Caseless.is_prefix and String.Caseless.is_suffix functions which check if some string is prefix or suffix of another ignoring case.Hash_set now supports the intersection operationAdd functions to create Maps and Sets from Hashtbls or a Hash_sets. Existing code that do that sort of things usually end up going through an intermediate assoc list, which is not particularly efficient. The friction of inlining something better at the app level feels just too verbose so usually it's not done. We hope that by offering the right util in core, those call sites can be updated for something both shorter and more efficient.
Note: we do not currently carry 'cmp cmp witnesses into our Hashtbls and Hash_sets the same way we do it for Maps and Sets. There exists cases where the following code would actually raise:
let map_of_hashtbl (hashtbl : (M.t, 'a) Hashtbl.t) = hashtbl |> Hashtbl.to_alist |> M.Map.of_alist_exn ;;
If the hashtbl and the M.Map do not use the same compare function, and there exists some keys a1, and a2 such that:
(Hashtbl.hashable hashtbl).compare a1 a2 <> 0 && M.compare a1 a2 = 0
So, in the context of that feature there was a choice to be made. Either Map.of_hashtbl can silently replace previous binding while folding over the hashtbl, or can raise.
Conservatively, the choise to raise was taken, thus the function has the usual _exn suffix: Map.of_hashtbl_exn
For sets, the context is suffisiently different so as to deliberatly not apply the same approach. Like when using Set.of_list one wants to aggreate values from a container into a set. Hashtbl keys and Hash_set values are just a different kind of container than a list, but the added value of raising in that function in case the hash set or the hashtbl have dups is not clear, so that path was not pursued.
With more work, we could (and someday maybe will) have Hashtbl and Hash_set carry comparison witnesses and create versions of those functions that cannot raise and reuse the comparison and the compare witness of the hashtbl or hash_set.
In the process of implementing Map.of_hashtbl_exn it appeared that Map.of_alist was inefficiently doing the lookup twice for each element to be inserted. The feature fixes this.
t arguments to Error.tag and similar functions to allow easier partial application.t arguments to Error.tag and similar functions to allow easier partial application.Map.Stable
Added Map.Stable, including a Make functor for making stable map types.
Queue_ts.Introduce Quickcheck.Generator.geometric and add/modify functions based on it:
Generator.size to Generator.small_non_negative_intGenerator.small_positive_intGenerator.geometricThe following segfaults:
open Core.Std;; let s = Stack.create();; Stack.push s 1.0;; Stack.push s 2.0;; Stack.push s 3.0;;
This is because we put floats together with non-floats in the same array without care.
In particular, if you call Array.init ~f such that f 0 returns a float, then ocaml will decide to create an unboxed float array (tagged with Double_array). It will then proceed to call f i and try to unbox each assuming they all are pointers to floats. If f i happens to return an immediate (such as Obj.magic ()) instead of a pointer, this segfaults.
Queue and Deque don't seem to suffer from the same problem because they both create arrays initially populated with immediates so the arrays end up not tagged with Double_array. It happens that it's safe to put floats into such arrays, so let's use the same trick in Stack. The plan is to eventually use (a safety wrapper over) Obj_array in all of Stack, Queue, Deque (jane/stack-segfault feature).
Renamed the "Stable" module type to "Stable_without_comparator", in anticipation of requiring a comparator and comparator witness in the module type called "Stable".
This is the first in a chain of features which will push us towards including comparator witnesses in stable type definitions, so that defining stable sets and maps is easier.
Added back a "Stable" module type that now includes a comparator witness type and corresponding comparator value.
Defining the comparator stuff in a stable way will allow us to define stable set and map types that are equivalent to their non-stable counterparts. (See child features)
Along the way, added Identifiable.Make_using_comparator to the family of _using_comparator functors, to help with this task.
Introduce a Blang submodule which has infix operators and other convenient shortcuts.
In a world where increasingly we are writing configuration as OCaml code, it seems right that we should focus not only on the sexp DSL but the OCaml one as well.
Comparable.V1.Make into comparable.ml (as usual) rather than in stable_containers.ml.Renamed:
lib/core_kernel/test --> lib/core_kernel/test-bin
since these directories contain executables to run rather than libraries with standard unit tests. This is in preparation for moving the standard unit tests to a more "normal" test directory.
core_kernel/src to core_kernel/test.Binable.S containing only functions, for use in the definition of recursive modules.*_using_comparator variant of the functor Comparable.Map_and_set_binable.Add a flag to Quickcheck.test_no_duplicates to allow some percentage of values to be duplicates.
This is primarily in preparation for changing the "no-duplicates" tests for random function generation to be extensional (based on results for a fixed set of inputs) rather than intensional (based on sexps constructed by Quickcheck). This design change is also a good axis of flexibility in general.
exception declarations in quickcheck.ml and use Error.raise_s and %message instead.module Observer and module Generator. This feature just swaps them and makes no other change. This is in preparation for an upcoming feature that will introduce dependency of Generator on Observer, which will be easier to read as an incremental diff.Quickcheck.test. The behavior of top-level filter is a lot easier to reason about than nested recursive filters, especially with respect to attempts-vs-failures. This is in preparation for removing generator "failure" as a first-order concept and simplifying the model of generators.Container.S0 + a sub function to substring stuffAdds phantom type to Validated as witness of invariant
The witness prevents types from different applications of the Validated functors from unifying with one another.
Fqueue.of_list, an inverse of Fqueue.to_list.Quickcheck.Generator.fn_with_sexp type and all the sexp arguments to Quickcheck.Observer.t constructors.Added to Monad.Syntax.Let_syntax:
val return : 'a -> 'a t
so that when one does:
open Some_random_monad.Let_syntax
return is in scope.
Most of the diff is the addition of let return = return in the necessary places. The rest is changing uses of return to Deferred.return in contexts where some other monad was opened, shadowing Deferred.return.
Sequence.of_lazy to allow entirely lazily-computed sequences (rather than just lazily computing the elements).Container.fold_result-and-until
Containers learned to fold using a f that returns a Result.t, bailing out early if necessary
Containers also learned to fold_until: fold using a f that returns
Continue of 'a | Stop of 'b
terminating the fold when f returns Stop _.
fold_until evaluates to Finished of 'a if f never returns Stop _ Stopped_early of 'b when the f returns Stop _
In_channel and Out_channel equivalents in Pervasives, deleting a little bit of garbage along the wayEmulate 63bit integers on 32bit platform so that we have same semantic in 32bit and 64bit arch.
We use the same kind of encoding as native int on 64bit architecture (with a twist). A 63bit integer is a 64bit integer with its bits shifted to the left. (In OCaml, in 64 bit, an int is a 64 bit integer shifted to the left, with the immediate bit set to 1).
Fqueue.map implementation.This is the followup to the earlier deprecation of Map.iter and Hashtbl.iter.
Map.iter and Hashtbl.iter and Map.filter functions to iterate over values only instead of both keys and values. (For the old behavior, use the non-deprecated iteri or filteri functions instead).Deferred_map, Multi_map, Total_map, Fold_map, Extended_hashtbl, Pooled_hashtbl, Bounded_int_table, Imm_hash.This may break code that upgrades directly to this version from before these functions were deprecated, or code that continued to use Map.iter or Hashtbl.iter or Map.filter after deprecation. As mentioned above, use iteri and filteri instead.
Additionally:
Hashtbl.iter_vals. (Use Hashtbl.iter instead.)Add popcount (count # of 1 bits in representation) operation for int types.
┌───────────────────────────────────────┬──────────┬────────────┐ │ Name │ Time/Run │ Percentage │ ├───────────────────────────────────────┼──────────┼────────────┤ │ int_math.ml popcount_bench_overhead │ 2.11ns │ 57.12% │ │ int_math.ml int_popcount │ 3.17ns │ 85.72% │ │ int_math.ml int32_popcount │ 3.70ns │ 99.95% │ │ int_math.ml int64_popcount │ 3.70ns │ 99.96% │ │ int_math.ml nativeint_popcount │ 3.70ns │ 100.00% │ └───────────────────────────────────────┴──────────┴────────────┘
Time_ns.next_multiple to use integer division instead of floating point division.Move the contents of time_ns.mli to time_ns_intf.ml in both core and core_kernel, and clean up the presentation of the signatures a bit in both.
Also adds Int63 to Std_internal.
Unit_of_time out of Core.Time.Span and into Core_kernel. Move Core.Time_ns.Span.{to,of}_unit_of_time into Core_kernel.Time_ns.Span.Core_kernel.Flat_queue, which is unused.Array.empty, in favor of || .Improve the interface and error message of Quickcheck.test_no_duplicates.
The function no longer supports equality-based duplicate tests, which were unused and inefficient. It only supports compare-based tests.
The error message now groups values with the number of duplicates produced, sorted in descending order so the most common duplicates come early. It also includes all duplicates generated up to the maximum trial count, rather than stopping as soon as the cutoff threshold is reached.
Now that the Decimal module no longer means "decimal" (it's only functionality is to change sexp converters and bin-io to rejecting nan and inf values), rename it as Float_with_finite_only_serialization, to better befit its semantics.
In addition to a pile of renames, this also changes many references to Decimal.t or decimal in mlis to float, since the decimal type didn't really convey any extra semantics about the type; just about the serializers.
Prompted by the embarrassing Stack segfault bug we decided to put the unsafe Obj.magic stuff present in various array-backed data structures (Queue, Deque, Stack) in a single place.
We introduce the following new modules:
Uniform_array: a wrapper on top of Obj_array that makes the elements homogeneous. It's equivalent to Array in semantics, but differs in performance and in how it interacts with Obj.magic.Option_array: 'a Option_array.t is semantically equivalent to 'a Option.t Array.t, but avoids allocation of Some values, instead representing None by Obj.magic'ing a distinguished value.On top of making things safer, this feature happens to improve performance:
Original benchmarks:
$ ./array_queue_old.exe -quota 2 Estimated testing time 1.43333m (43 benchmarks x 2s). Change using -quota SECS. ┌────────────────────────────────────┬─────────────────┬─────────────┬───────────────┬──────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├────────────────────────────────────┼─────────────────┼─────────────┼───────────────┼──────────┼────────────┤ │ enqueue_dequeue_mixed │ 36_016_512.46ns │ 999_835.00w │ 2_096_659.14w │ 7.14w │ 100.00% │ │ pipeline │ 175.89ns │ │ │ │ │ │ blit_transfer 0 │ 7.39ns │ │ │ │ │ │ blit_transfer 1 │ 78.26ns │ │ │ │ │ │ blit_transfer 2 │ 93.91ns │ │ │ │ │ │ blit_transfer 4 │ 127.53ns │ │ │ │ │ │ blit_transfer 8 │ 195.41ns │ │ │ │ │ │ blit_transfer 16 │ 351.20ns │ │ │ │ │ │ blit_transfer 32 │ 647.15ns │ │ │ │ │ │ blit_transfer 64 │ 1_168.12ns │ │ │ │ │ │ blit_transfer 128 │ 2_288.00ns │ │ │ │ │ │ enqueue 10 │ 440.79ns │ 42.00w │ │ │ │ │ enqueue 1000000 │ 23_268_213.72ns │ 526.00w │ 2_096_658.71w │ 6.71w │ 64.60% │ │ Queue.enqueue + dequeue:1 │ 15.59ns │ │ │ │ │ │ Queue.enqueue + dequeue:2 │ 14.38ns │ │ │ │ │ │ Queue.enqueue + dequeue:4 │ 15.23ns │ │ │ │ │ │ Queue.enqueue + dequeue:8 │ 16.40ns │ │ │ │ │ │ Queue.enqueue + dequeue:16 │ 16.33ns │ │ │ │ │ │ Queue.enqueue + dequeue:32 │ 16.44ns │ │ │ │ │ │ Queue.enqueue + dequeue:64 │ 16.54ns │ │ │ │ │ │ Queue.enqueue + dequeue:128 │ 15.18ns │ │ │ │ │ │ Queue.enqueue + dequeue:256 │ 16.58ns │ │ │ │ │ │ Queue.enqueue + dequeue:512 │ 16.65ns │ │ │ │ │ │ Linked_queue.enqueue + dequeue:1 │ 53.33ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:2 │ 53.95ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:4 │ 54.64ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:8 │ 55.18ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:16 │ 55.57ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:32 │ 55.78ns │ 3.00w │ 3.03w │ 3.03w │ │ │ Linked_queue.enqueue + dequeue:64 │ 55.67ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:128 │ 56.64ns │ 3.00w │ 3.03w │ 3.03w │ │ │ Linked_queue.enqueue + dequeue:256 │ 56.28ns │ 3.00w │ 3.03w │ 3.03w │ │ │ Linked_queue.enqueue + dequeue:512 │ 56.15ns │ 3.00w │ 3.03w │ 3.03w │ │ │ Deque.enqueue + dequeue:1 │ 16.36ns │ │ │ │ │ │ Deque.enqueue + dequeue:2 │ 15.06ns │ │ │ │ │ │ Deque.enqueue + dequeue:4 │ 15.07ns │ │ │ │ │ │ Deque.enqueue + dequeue:8 │ 17.13ns │ │ │ │ │ │ Deque.enqueue + dequeue:16 │ 17.22ns │ │ │ │ │ │ Deque.enqueue + dequeue:32 │ 17.37ns │ │ │ │ │ │ Deque.enqueue + dequeue:64 │ 17.23ns │ │ │ │ │ │ Deque.enqueue + dequeue:128 │ 16.69ns │ │ │ │ │ │ Deque.enqueue + dequeue:256 │ 16.99ns │ │ │ │ │ │ Deque.enqueue + dequeue:512 │ 17.52ns │ │ │ │ │ └────────────────────────────────────┴─────────────────┴─────────────┴───────────────┴──────────┴────────────┘
New benchmarks:
./array_queue.exe -quota 2; Estimated testing time 1.43333m (43 benchmarks x 2s). Change using -quota SECS. ┌────────────────────────────────────┬─────────────────┬─────────────┬───────────────┬──────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├────────────────────────────────────┼─────────────────┼─────────────┼───────────────┼──────────┼────────────┤ │ enqueue_dequeue_mixed │ 28_693_436.79ns │ 999_835.00w │ 2_096_658.82w │ 6.82w │ 100.00% │ │ pipeline │ 163.08ns │ │ │ │ │ │ blit_transfer 0 │ 7.40ns │ │ │ │ │ │ blit_transfer 1 │ 78.14ns │ │ │ │ │ │ blit_transfer 2 │ 86.72ns │ │ │ │ │ │ blit_transfer 4 │ 105.65ns │ │ │ │ │ │ blit_transfer 8 │ 143.44ns │ │ │ │ │ │ blit_transfer 16 │ 219.64ns │ │ │ │ │ │ blit_transfer 32 │ 386.75ns │ │ │ │ │ │ blit_transfer 64 │ 692.08ns │ │ │ │ │ │ blit_transfer 128 │ 1_331.16ns │ │ │ │ │ │ enqueue 10 │ 393.34ns │ 42.00w │ │ │ │ │ enqueue 1000000 │ 18_775_585.92ns │ 526.00w │ 2_096_658.55w │ 6.55w │ 65.44% │ │ Queue.enqueue + dequeue:1 │ 14.53ns │ │ │ │ │ │ Queue.enqueue + dequeue:2 │ 13.73ns │ │ │ │ │ │ Queue.enqueue + dequeue:4 │ 10.61ns │ │ │ │ │ │ Queue.enqueue + dequeue:8 │ 14.56ns │ │ │ │ │ │ Queue.enqueue + dequeue:16 │ 12.14ns │ │ │ │ │ │ Queue.enqueue + dequeue:32 │ 11.10ns │ │ │ │ │ │ Queue.enqueue + dequeue:64 │ 11.22ns │ │ │ │ │ │ Queue.enqueue + dequeue:128 │ 11.52ns │ │ │ │ │ │ Queue.enqueue + dequeue:256 │ 11.52ns │ │ │ │ │ │ Queue.enqueue + dequeue:512 │ 11.00ns │ │ │ │ │ │ Linked_queue.enqueue + dequeue:1 │ 52.42ns │ 3.00w │ 3.03w │ 3.03w │ │ │ Linked_queue.enqueue + dequeue:2 │ 52.52ns │ 3.00w │ 2.98w │ 2.98w │ │ │ Linked_queue.enqueue + dequeue:4 │ 52.68ns │ 3.00w │ 2.98w │ 2.98w │ │ │ Linked_queue.enqueue + dequeue:8 │ 53.21ns │ 3.00w │ 2.98w │ 2.98w │ │ │ Linked_queue.enqueue + dequeue:16 │ 69.40ns │ 3.00w │ 2.97w │ 2.97w │ │ │ Linked_queue.enqueue + dequeue:32 │ 55.23ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:64 │ 54.24ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:128 │ 55.25ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:256 │ 55.10ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Linked_queue.enqueue + dequeue:512 │ 55.47ns │ 3.00w │ 3.02w │ 3.02w │ │ │ Deque.enqueue + dequeue:1 │ 11.73ns │ │ │ │ │ │ Deque.enqueue + dequeue:2 │ 11.63ns │ │ │ │ │ │ Deque.enqueue + dequeue:4 │ 11.65ns │ │ │ │ │ │ Deque.enqueue + dequeue:8 │ 12.86ns │ │ │ │ │ │ Deque.enqueue + dequeue:16 │ 12.86ns │ │ │ │ │ │ Deque.enqueue + dequeue:32 │ 12.99ns │ │ │ │ │ │ Deque.enqueue + dequeue:64 │ 12.86ns │ │ │ │ │ │ Deque.enqueue + dequeue:128 │ 12.91ns │ │ │ │ │ │ Deque.enqueue + dequeue:256 │ 12.81ns │ │ │ │ │ │ Deque.enqueue + dequeue:512 │ 12.85ns │ │ │ │ │ └────────────────────────────────────┴─────────────────┴─────────────┴───────────────┴──────────┴────────────┘
Array.truncate makes it really hard to use unsafe_get safely: even things in Array module itself fail to do it properly.
For example, this thing reliably segfaults:
let a = Array.create ~len:2 "foo" in
Array.iter a ~f:(fun s ->
printf "%s" s;
Array.truncate a ~len:1)We should rename truncate to unsafe_truncate and stop claiming that the array length is allowed to change over time.
Byte_units.Stable uses type substitution, not equality, so there is no Byte_units.Stable.V1.t
Fix this by changing to type equality
Remove Quickcheck.Generator.failure.
This is in preparation for moving to a model of generators for which there is no notion of "failure".
Change Int*.gen* to use a uniform distribution.
A simple distribution is easier to reason about, and does not require tricky tuning. The previous distribution was tuned to hit some notion of "common values", and so that it might frequently produce duplicates with itself, which was arbitrary, hard to tune, and meant it spent a lot of time generating only border cases.
While some use cases might still want some border-case tuning, uniform distributions are probably a better basic building block, and are much easier to implement.
map_fst and map_snd, following the convention of the accessors. Usually, numeric suffixes mean higher arities, not different fields.After discussion, rather than checking for overflow in Time_ns arithmetic, clarify that it's silently ignored. (Subsequent conversions may or may not notice.)
We did identify the set of functions to document:
Time_ns.Span.((+), (-), scale_int, scale_int63, create, of_parts)
Time_ns.(add, sub, diff, abs_diff, next_multiple)Added Core_int63.(add_with_overflow_exn, abs_with_overflow_exn, neg_with_overflow_exn) in the course of abandoned work on overflow detection in Time_ns. These may be useful. mul_with_overflow_exn was abandoned because
Changes related to Float.sign
Float.sign currently maps -1e-8 and nan to Zero. Some users don't expect this. This feature addresses that via the following changes:
Float.sign renamed to Float.robust_sign. (Float.sign is still present, but deprecated.)Float.sign_exn introduced which does not use robust comparison, and which raises on nan.Sign pulled out of Float and made its own module, and sign : t -> Sign.t added to Comparable.With_zero. In particular, Int.sign : int -> Sign.t now exists. (In looking at existing uses of Float.sign, there was at least one case where the user was converting an int to a float to get its sign. That ended up being deleted, but it still seems desirable to have Int.sign. There were also record types with a field sign : Float.Sign.t where logically the type has no real connection to Float.)Float.robust_sign revisited to make sure that's the behavior we want.Hashtbl functions, using Map as a point of comparison. A lot of Hashtbl functions did not have tests, so I used an interface trick to require every function to show up in the test module. The easiest way to write a readable test for every function was to compare it to a similar datatype, so I went with Map.Hashtbl.incr and Hashtbl.decr to specify entries should be removed if the value is 0symmetric_diff has a typo in it.Timing_wheel_ns to use %message and %sexp.Improved the error message raised by Timing_wheel.add and reschedule if the supplied time is before the start of the current interval.
Previously, the error message was something like:
("Timing_wheel.Priority_queue got invalid key" (key ...) (timing_wheel ...))
Now, it will be like:
("Timing_wheel cannot schedule alarm before start of current interval" (at ...) (now_interval_num_start ...))
The old message was confusing because key is less understandable than at, and because it didn't make clear that this is a usage error, as opposed to a Timing_wheel bug.
Implementing this efficiently required adding a field to timing wheel:
mutable now_interval_num_start : Time_ns.t
so that the check done by add is fast.
Add Comparable.Make_using_comparator.
Since Map and Set already have Make_using_comparator functors, there's no particular reason for Comparable not to have one.
More concretely, this will be useful when (if) we add stable containers to core: we can add a stable version of Comparable.Make, then pass the resulting comparator into the unstable functor to get equal types.
Total_map.Make_using_comparator functor to allow the creation of total maps which are type equivalent to regular maps.Change default major heap increments to be % of the heap size instead of a constant increment
Also changed type of overhead parameters to Percent.t
Core.Std.Sexp.Sexp_{option,list,array,opaque}, which used to allow binability for types sexp_option, sexp_list, etc., but now serve no purpose.Change the signature of the output of Comparable.Make{,_binable}_using_comparator to not include comparator_witness.
This is so that code like this will compile:
include T include Comparable.Make_using_comparator (T)
Changed Timing_wheel_ns so that it only supports times at or after the epoch, i.e. only non-negative Time_ns.t values. Times before the epoch aren't needed, and supporting negative times unnecessarily complicates the implementation.
Removed fields from Timing_wheel_ns.t that are now constants:
; min_time : Time_ns.t ; max_time : Time_ns.t ; min_interval_num : Interval_num.t
Timing_wheel.t, cache alarm_upper_bound, which allows us to give an improved error message when Timing_wheel.add is called with a time beyond alarm_upper_bound.Add Sequence.merge_with_duplicates
(** merge_with_duplicates_element t1 t2 ~cmp interleaves the elements of t1 and t2. Where the two next available elements of t1 and t2 are unequal according to cmp, the smaller is produced first. *) val merge_with_duplicates : 'a t -> 'a t -> cmp:('a -> 'a -> int)
module Merge_with_duplicates_element : sig type 'a t = | Left of 'a | Right of 'a | Both of 'a * 'a @@deriving bin_io, compare, sexp end
Add Set.merge_to_sequence
(** Produces the elements of the two sets between greater_or_equal_to and less_or_equal_to in order, noting whether each element appears in the left set, the right set, or both. In the both case, both elements are returned, in case the caller can distinguish between elements that are equal to the sets' comparator. Runs in O(length t + length t'). *)
val merge_to_sequence : ?order : Increasing (** default *) | Decreasing -> ?greater_or_equal_to : 'a -> ?less_or_equal_to : 'a -> ('a, 'cmp) t -> ('a, 'cmp) t -> 'a Merge_to_sequence_element.t Sequence.t
module Merge_to_sequence_element : sig type 'a t = 'a Sequence.Merge_with_duplicates_element.t = | Left of 'a | Right of 'a | Both of 'a * 'a @@deriving bin_io, compare, sexp end
Make Hashtbl.merge_into take explicit variant type
type 'a merge_into_action = Remove | Set_to of 'a
val merge_into : f:(key:'k key -> 'a1 -> 'a2 option -> 'a2 merge_into_action) -> src:('k, 'a1) t -> dst:('k, 'a2) t -> unit
The f used to return 'a2 option, and it was unclear whether None meant do nothing or remove. (It meant do nothing.)
Some red-black tree code showed a 15-20% speedup by inlining the comparison, rather than relying on the caml_int_compare external call. I've tried to cleanly apply it to Core_int (though it can't really be done without an Obj.magic), though this may be a better fit for a compiler patch to treat int comparisons as an intrinsic.
Added an inline test for boundary cases. Presently it returns the identical values to caml_int_compare, though probably it should only be held to same sign results.
Hashtbl.[filter_]replace_all[i] to Hashtbl.[filter_]map[i]_inplace.debug.ml from incremental.Float_intf used 'float' sometimes where it means 't'.Identifiable.Make_with_comparator, for situations where you want to preserve the already known comparator, for example to define stable sets and maps that are type equivalent to unstable types and sets.Container.Make0 for monomorphic container types.Bounded_int_table.find.Core_list from Sequence.Bigstring and Iobuf for reading unsigned 64-bit integers.Comparable.bound to Maybe_bound.t. The purpose is to break up dependencies between the two.Doubly_linked allocated during iteration. This became a large source of allocation for simple benchmarks like TCP pingpong (async/bench/pingpong). Some unnecessary allocations have been removed.Timing_wheel.next_alarm_fires_at_exn, which is useful to avoid allocation when you know the timing wheel isn't empty.Binary_searchable.Make* that don't require a For_test argument. This allows Binary_searchable.Make to be used for types that don't easily convert from arrays.Add Quickcheckable interface to Core and move generators/observers into type modules.
Renames core_list.ml to core_list0.ml, then adds a new core_list.ml with quickcheck generators and observers. This allows quickcheck.ml to use core_list0.ml without a dependency cycle.
The feature also moves the contents of quickcheck.mli into quickcheck_intf.ml.
Made Core.Unpack_buffer.Unpack_one.t be a unary type rather than a binary one, by hiding its partial_unpack type under an existential.
This makes it possible to make Unpack_one into a monad because we can combine two Unpack_one.t's with different partial_unpack types into a new Unpack_one.t with a different partial_unpack type.
Added an optional argument ?key_order for specifying the order of Map.to_alist output: either Increasing or Decreasing.
The default key order is no longer left unspecified: we're now committed to the `Increasing, which was the old behavior.
Total_map.sequence.Core.Bus, a publisher/subscriber system within the memory space of the program. This is a synchronous version of Async.Bus.Core_map.fold2 (fold based on the contents of two maps side-by-side).Core.Interfaces defines the Unit module type to be sig end. Increase uniformity with its other definitions by defining it to be Unit.S instead.Core_random.int to accept larger values than 1 lsl 30.Sexpable.Of_* and Binable.Of_* functors as stable.Core_char.int_is_ok, used by of_int and of_int_exn, use int compare instead of polymorphic compare.Char.For_quickcheck, memoize construction of the filtered chars generators, since if they are used once, they are likely to be used many times, and the construction is costly compared to generating a single char.Core_map to implement quickcheckable Extend Core_set to implement quickcheckableAvltree.add, replace ?(replace = true) with ~replace. This both makes the behavior more explicit, and saves some allocation occasionally.Avltree.iter directly, rather than using fold, which requires allocating a closure. This winds up being expensive during Hashtbl.iter.Add a function in Blang to deal with boolean expressions E representing the membership of elements in a set, given a universe U and a function projecting each atoms of E to a subset of U.
{Blang.eval_set ~universe:js_tech resolve_named_set ("(or (and has-blue-eyes has-brown-hair) (and has-brown-eyes has-blue-hair))" |> Sexp.of_string |> t_of_sexp)}
Random.self_init by default raise if used in inline tests. One can opt out by passing ~allow_in_tests:true.maybe_resize_table allocates the same closure in each iteration of a for loop. Allocate it just once.Hashtbl.remove_one and Hashtbl.remove_multi are the same function, written twice. Remove remove_one and replace uses with remove_multi.Bigstring.unsafe_{get,set}-{,u}int8 used the generic bigarray access function without a type annotation. As a result the compiler generated a call to the generic C function.
Fixed this by adding type annotations.
Made Unpack_buffer.Unpack_one monadic so that users can easily compose file parsers
Added a couple simple parsers as examples and for testing.
Avoid use of polymorphic compare in Quickcheck. Make Quickcheck.Generator.bind_choice lazy: do not eagerly descend into all branches.
Reduces memory overhead by setting a threshold on the probability of choices that are remembered and discarded by Quickcheck.iter and friends.
Motivation: Currently, Quickcheck.iter and related functions guarantee never to repeat a choice from a generator. This winds up recording every choice ever made, which for a lot of generators is a prohibitive cost in space, and most of the recorded values are very unlikely to be repeated anyway.
Implementation: This feature sets a probability threshold below which choices will not be remembered. Choosing a fairly low, but still non-zero, threshold means values are still very unlikely to be repeated, but memory usage stays low.
As of this version, the benefits of "forgetting" unlikely-to-repeat values:
┌──────────────────────────────────────────┬──────────┬─────────┬──────────┬──────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├──────────────────────────────────────────┼──────────┼─────────┼──────────┼──────────┼────────────┤ │ quickcheck.ml:Quickcheck.iter remember │ 20.26ms │ 16.33Mw │ 100.85kw │ 100.85kw │ 100.00% │ │ quickcheck.ml:Quickcheck.iter forget │ 17.65ms │ 16.21Mw │ 34.83kw │ 34.83kw │ 87.10% │ └──────────────────────────────────────────┴──────────┴─────────┴──────────┴──────────┴────────────┘
Optimizations to:
Float.t validation functionsValidateList.fold_rightOption.compare compatible with @@deriving compare.In Core_hashtbl, the add_worker function used a bool ref both internally and to pass to Avltree to track whether a new key is added. This was allocated on every call to add or set, and set didn't even use its contents.
This version pre-allocates the bool ref inside each Core_hashtbl.t and reuses it. It still can't be a mutable field because it does need to be passed to Avltree.
After change:
┌───────────────────────────────────────────────────┬──────────────┬────────────┬────────────┬────────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├───────────────────────────────────────────────────┼──────────────┼────────────┼────────────┼────────────┼────────────┤ │ Hashtbl.set no collisions │ 84.73ns │ 3.00w │ 0.83w │ 0.83w │ 0.01% │ │ Hashtbl.set w/ collisions │ 112.46ns │ │ │ │ 0.02% │ │ Hashtbl.change no collisions │ 82.74ns │ 3.50w │ 0.53w │ 0.53w │ 0.01% │ │ Hashtbl.change w/ collisions │ 191.50ns │ 4.56w │ 1.15w │ 1.15w │ 0.03% │ │ Hashtbl.merge no collisions │ 292_976.43ns │ 26_669.00w │ 15_381.62w │ 12_305.62w │ 48.52% │ │ Hashtbl.merge w/ collisions │ 603_822.86ns │ 33_001.00w │ 20_037.22w │ 16_961.22w │ 100.00% │ │ Hashtbl.add_exn no resize, no collisions │ 80_992.57ns │ 3_088.00w │ 4_102.63w │ 3_077.63w │ 13.41% │ │ Hashtbl.add_exn no resize, w/ collisions │ 178_080.05ns │ 4_621.00w │ 5_668.61w │ 4_643.61w │ 29.49% │ │ Hashtbl.add_exn w/ resize, no collisions │ 176_442.98ns │ 16_403.00w │ 9_222.64w │ 6_148.64w │ 29.22% │ │ Hashtbl.add_exn w/ resize, w/ collisions │ 297_577.29ns │ 19_472.00w │ 12_292.13w │ 9_218.13w │ 49.28% │ └───────────────────────────────────────────────────┴──────────────┴────────────┴────────────┴────────────┴────────────┘
Before change:
┌───────────────────────────────────────────────────┬──────────────┬────────────┬────────────┬────────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├───────────────────────────────────────────────────┼──────────────┼────────────┼────────────┼────────────┼────────────┤ │ Hashtbl.set no collisions │ 104.88ns │ 5.00w │ 1.26w │ 1.26w │ 0.02% │ │ Hashtbl.set w/ collisions │ 114.33ns │ 2.00w │ │ │ 0.02% │ │ Hashtbl.change no collisions │ 85.79ns │ 4.50w │ 0.58w │ 0.58w │ 0.02% │ │ Hashtbl.change w/ collisions │ 198.75ns │ 5.56w │ 1.28w │ 1.28w │ 0.04% │ │ Hashtbl.merge no collisions │ 307_857.59ns │ 31_787.00w │ 15_380.91w │ 12_304.91w │ 58.19% │ │ Hashtbl.merge w/ collisions │ 529_054.02ns │ 38_119.00w │ 20_015.32w │ 16_939.32w │ 100.00% │ │ Hashtbl.add_exn no resize, no collisions │ 77_708.20ns │ 5_135.00w │ 4_101.83w │ 3_076.83w │ 14.69% │ │ Hashtbl.add_exn no resize, w/ collisions │ 180_950.23ns │ 6_668.00w │ 5_638.77w │ 4_613.77w │ 34.20% │ │ Hashtbl.add_exn w/ resize, no collisions │ 177_492.82ns │ 19_476.00w │ 9_237.07w │ 6_163.07w │ 33.55% │ │ Hashtbl.add_exn w/ resize, w/ collisions │ 285_298.72ns │ 22_545.00w │ 12_330.90w │ 9_256.90w │ 53.93% │ └───────────────────────────────────────────────────┴──────────────┴────────────┴────────────┴────────────┴────────────┘
In Core_hashtbl.add_worker, removed a match that avoided calling Avltree.add, but actually did hurt performance overall.
Perhaps at some point before cross-module inlining, this was a helpful optimization. Right now it bypasses the mutation inside Avltree, so replacing a value in a non-colliding bucket (a Leaf) causes unnecessary re-allocation of the leaf.
After changes:
┌───────────────────────────────────────────────────┬──────────────┬────────────┬────────────┬────────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├───────────────────────────────────────────────────┼──────────────┼────────────┼────────────┼────────────┼────────────┤ │ Hashtbl.set no collisions │ 52.19ns │ 2.00w │ │ │ │ │ Hashtbl.set w/ collisions │ 112.04ns │ 2.00w │ │ │ 0.02% │ │ Hashtbl.change no collisions │ 87.25ns │ 4.50w │ 0.58w │ 0.58w │ 0.02% │ │ Hashtbl.change w/ collisions │ 195.85ns │ 5.56w │ 1.29w │ 1.29w │ 0.04% │ │ Hashtbl.merge no collisions │ 308_164.10ns │ 31_787.00w │ 15_380.91w │ 12_304.91w │ 58.48% │ │ Hashtbl.merge w/ collisions │ 526_914.80ns │ 38_119.00w │ 20_013.81w │ 16_937.81w │ 100.00% │ │ Hashtbl.add_exn no resize, no collisions │ 76_983.60ns │ 5_135.00w │ 4_100.44w │ 3_075.44w │ 14.61% │ │ Hashtbl.add_exn no resize, w/ collisions │ 174_712.92ns │ 6_668.00w │ 5_667.47w │ 4_642.47w │ 33.16% │ │ Hashtbl.add_exn w/ resize, no collisions │ 176_681.57ns │ 19_476.00w │ 9_231.75w │ 6_157.75w │ 33.53% │ │ Hashtbl.add_exn w/ resize, w/ collisions │ 280_448.62ns │ 22_545.00w │ 12_293.32w │ 9_219.32w │ 53.22% │ └───────────────────────────────────────────────────┴──────────────┴────────────┴────────────┴────────────┴────────────┘
Before changes:
┌───────────────────────────────────────────────────┬──────────────┬────────────┬────────────┬────────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├───────────────────────────────────────────────────┼──────────────┼────────────┼────────────┼────────────┼────────────┤ │ Hashtbl.set no collisions │ 104.88ns │ 5.00w │ 1.26w │ 1.26w │ 0.02% │ │ Hashtbl.set w/ collisions │ 114.33ns │ 2.00w │ │ │ 0.02% │ │ Hashtbl.change no collisions │ 85.79ns │ 4.50w │ 0.58w │ 0.58w │ 0.02% │ │ Hashtbl.change w/ collisions │ 198.75ns │ 5.56w │ 1.28w │ 1.28w │ 0.04% │ │ Hashtbl.merge no collisions │ 307_857.59ns │ 31_787.00w │ 15_380.91w │ 12_304.91w │ 58.19% │ │ Hashtbl.merge w/ collisions │ 529_054.02ns │ 38_119.00w │ 20_015.32w │ 16_939.32w │ 100.00% │ │ Hashtbl.add_exn no resize, no collisions │ 77_708.20ns │ 5_135.00w │ 4_101.83w │ 3_076.83w │ 14.69% │ │ Hashtbl.add_exn no resize, w/ collisions │ 180_950.23ns │ 6_668.00w │ 5_638.77w │ 4_613.77w │ 34.20% │ │ Hashtbl.add_exn w/ resize, no collisions │ 177_492.82ns │ 19_476.00w │ 9_237.07w │ 6_163.07w │ 33.55% │ │ Hashtbl.add_exn w/ resize, w/ collisions │ 285_298.72ns │ 22_545.00w │ 12_330.90w │ 9_256.90w │ 53.93% │ └───────────────────────────────────────────────────┴──────────────┴────────────┴────────────┴────────────┴────────────┘
Rewrite Hashtbl.merge to be simpler and faster.
After changes:
┌──────────────────────────────────────┬──────────┬─────────┬──────────┬──────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├──────────────────────────────────────┼──────────┼─────────┼──────────┼──────────┼────────────┤ │ Hashtbl.merge no collisions │ 172.57us │ 17.44kw │ 9.22kw │ 7.69kw │ 48.76% │ │ Hashtbl.merge w/ collisions │ 284.55us │ 20.61kw │ 11.53kw │ 9.99kw │ 80.41% │ │ Pooled_hashtbl.merge no collisions │ 260.57us │ 5.20kw │ 19.18kw │ 3.09kw │ 73.63% │ │ Pooled_hashtbl.merge w/ collisions │ 353.88us │ 5.20kw │ 19.18kw │ 3.09kw │ 100.00% │ └──────────────────────────────────────┴──────────┴─────────┴──────────┴──────────┴────────────┘
Before changes:
┌──────────────────────────────────────┬──────────┬─────────┬──────────┬──────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├──────────────────────────────────────┼──────────┼─────────┼──────────┼──────────┼────────────┤ │ Hashtbl.merge no collisions │ 309.59us │ 31.79kw │ 15.38kw │ 12.30kw │ 48.91% │ │ Hashtbl.merge w/ collisions │ 526.67us │ 38.12kw │ 19.97kw │ 16.90kw │ 83.21% │ │ Pooled_hashtbl.merge no collisions │ 469.41us │ 7.32kw │ 35.29kw │ 3.12kw │ 74.16% │ │ Pooled_hashtbl.merge w/ collisions │ 632.96us │ 7.32kw │ 35.29kw │ 3.12kw │ 100.00% │ └──────────────────────────────────────┴──────────┴─────────┴──────────┴──────────┴────────────┘
Make Hashtbl functions raise an exception if a callback passed in as an argument mutates one of the hash tables being worked on.
Usually, though not always, this comes up for iteration functions. Once a hash table has been mutated, it is unsafe to continue operating on it, as its structure may have changed. Buckets and their contents may have been moved or resized; continuing may result in skipping key/value pairs, repeating key/value pairs, or executing unsafe operations.
This feature adds a mutation_allowed flag to hash tables. Each mutating operation first checks the flag, and raises if it is not set. Each operation with callbacks that must not mutate unsets the flag before calling the callbacks, and restores the flag's original value when it finishes.
We compared the timing of this implementation to an alternate implementation using a mutation counter, and the time and space used for this implementation was much better for iteration and within epsilon of the other for single-key operations like set.
Array function names related to zipping are all over the place. Make them match List, which has a nice uniform naming scheme.
combine -> zip_exnsplit -> unzipzip remains named as zip)~key and ~data labels to Hashtbl.filteri_inplaceHash_set.to_hashtbl, by analogy to Set.to_map.Since we are mutating avltrees in place, make sure the compiler sees the type parameters as invariant.
Tested that a segfaulting example doesn't compile anymore.
Add label f to Hashtbl.change, Map.change, & family.
Introduce the new function update in those modules, which enforces statically the presence of a resulting value
Example:
-|val Hashtbl.change : 'a t -> key -> ('a option -> 'a option) -> unit
+|val Hashtbl.change : 'a t -> key -> f:('a option -> 'a option) -> unit +|val Hashtbl.update : 'a t -> key -> f:('a option -> 'a) -> unit
The motivation for the introduction of update is that in an overwhelming majority of the places where Hashtbl.change is used in our codebase, it is statically known that a new value shall be computed and stored. The use of the dynamism offered by change, which can return an option, is error prone.
The addition of the label is considered acceptable in consideration to external libraries depending on core, because a missing label is just a warning, and we do not guarantee stability in the presence of -warn-error = true.
Changed Source_code_position.t from:
@@deriving bin_io, sexp
to:
@@deriving sexp_of
and made sexp_of use the human-readable format, "FILE:LINE:COL", rather than the unreadable format. Removed Source_code_position.t_hum, which is now obsolete.
If one wants a serialized source-code position, one can use Source_code_position.Stable.
Added Ref.set_temporarily, for temporarily setting a ref to a value for the duration of a thunk.
val set_temporarily : 'a t -> 'a -> f:(unit -> 'b) -> 'b
singleton : 'a -> 'a t in the stack containers. It cannot be added to Container.S directly because some container never have exactly 1 element.Core.Array match Invariant.S1.Change the interface of Make_iterable_binable* to give the control back to the user when deserializing Bin_protted data.
Improve the bin_prot deserialization of Maps and Sets. We construct a balanced tree directly instead of relying on Map.add / Set.add. This is possibile because the size of the map is known and elements are sorted.
The complexity goes down from n.log(n) to n.
In case the comparison function changes (and the invariant is not respected), there is a fallback to reconstruct the whole map from scratch.
Rope.t into a Buffer.t.Hashtbl differs from some other core containers with idiosyncratic naming of iteration functions. Change to be consistent and to more closely match the conventions for List and Array.
Hashtbl:
iter -> iteri.iter.Bag.invariant and Doubly_linked.invariant match Invariant.S1.Map differs from some other core containers with idiosyncratic naming of iteration functions. The current Map name conventions are also internally inconsistent as well (ex: current Map.iter vs Map.map vs Map.mapi). Change to be consistent and to more closely match the conventions for List and Array.
Map:
filter -> filteri.filter.Map differs from some other core containers with idiosyncratic naming of iteration functions. The current Map name conventions are also internally inconsistent as well (ex: current Map.iter vs Map.map vs Map.mapi). Change to be consistent and to more closely match the conventions for List and Array.
Map:
iter -> iteri.iter.Core.Set_once match Invariant.S1.Bigstring.concat.Core.Unique_id, exposed @@deriving typerep.val mem_elt : 'a t -> 'a Elt.t -> bool to Doubly_linked and BagOrdering.to_int which can be useful when one is writing a comparison function. Instead of dealing with the int directly, one can return Ordering.t values and transform them later into ints.Float.int_pow: Fast computation of x ** n when n is an integer.Core_kernel.Std.Nothing.t enumerable. There's no particular reason not to.Call Caml.Pervasives.do_at_exit before printing an exception and exiting
The default ocaml uncaught exception handler does this. It is especially useful for curses applications as the at_exit handler has a chance to put back the terminal in a good state before printing the exception and backtrace.
Do the same in Core and Async.
List.range', a generalization of List.range.Add some functions to Map that are present in Hashtbl:
remove_multipartition_tfpartitioni_tfpartition_mappartition_mapiMap.nth_exn as a missing complementary function to nthValidate.fail_sexp as fail_s, to follow our new *_s convention for Sexp.t-taking functions.Sequence.split_n_eagerly returns a pair of sequences, but every element of the first sequence has already been evaluated by the time it returns. This feature just makes the first component of the tuple a list instead of a sequence, and renames split_n_eagerly to split_n.
Additionally, this feature adds a new chunks_exn function, which just applies split_n until the input sequence is empty.
Timing_wheel's default alarm_precision, to force people to think about the precision they want when they create a timing wheel.Timing_wheel.Config.sexp_of_t, used @sexp_drop_default with level_bits.Write a better-performing Array.filter_mapi function, and implement Array.filter_map, Array.filter_opt, Array.partitioni_tf, and Array.partition_tf in terms of it.
Slightly worse for zero-length input arrays, about unch'd if we're filtering out almost everything (eq_zero), better on most everything else.
┌────────────────────────────────────────────────────┬─────────────────┬─────────────┬─────────────┬─────────────┬────────────┐ │ Name │ Time/Run │ mWd/Run │ mjWd/Run │ Prom/Run │ Percentage │ ├────────────────────────────────────────────────────┼─────────────────┼─────────────┼─────────────┼─────────────┼────────────┤ │ core\_array.ml:filter old-filter-even:0 │ 12.37ns │ 9.00w │ │ │ │ │ core\_array.ml:filter old-filter-even:1 │ 77.44ns │ 15.00w │ │ │ │ │ core\_array.ml:filter old-filter-even:10 │ 207.10ns │ 36.00w │ │ │ │ │ core\_array.ml:filter old-filter-even:100 │ 1_699.41ns │ 261.00w │ │ │ │ │ core\_array.ml:filter old-filter-even:1000 │ 56_320.50ns │ 1_009.00w │ 2_506.01w │ 1_004.01w │ 0.30% │ │ core\_array.ml:filter old-filter-even:10000 │ 469_134.89ns │ 10_009.00w │ 25_007.38w │ 10_005.38w │ 2.46% │ │ core\_array.ml:filter old-filter-even:100000 │ 4_421_742.22ns │ 100_009.00w │ 250_130.09w │ 100_128.09w │ 23.17% │ │ core\_array.ml:filter new-filter-even:0 │ 13.87ns │ 14.00w │ │ │ │ │ core\_array.ml:filter new-filter-even:1 │ 57.64ns │ 18.00w │ │ │ │ │ core\_array.ml:filter new-filter-even:10 │ 196.28ns │ 35.00w │ │ │ │ │ core\_array.ml:filter new-filter-even:100 │ 1_361.04ns │ 215.00w │ │ │ │ │ core\_array.ml:filter new-filter-even:1000 │ 21_473.76ns │ 1_014.00w │ 1_001.02w │ │ 0.11% │ │ core\_array.ml:filter new-filter-even:10000 │ 204_033.12ns │ 10_014.00w │ 10_001.14w │ 0.14w │ 1.07% │ │ core\_array.ml:filter new-filter-even:100000 │ 2_058_144.47ns │ 100_014.00w │ 100_002.00w │ 1.00w │ 10.78% │ │ core\_array.ml:filter old-filter-eq_zero:0 │ 12.21ns │ 9.00w │ │ │ │ │ core\_array.ml:filter old-filter-eq_zero:1 │ 71.23ns │ 15.00w │ │ │ │ │ core\_array.ml:filter old-filter-eq_zero:10 │ 174.80ns │ 24.00w │ │ │ │ │ core\_array.ml:filter old-filter-eq_zero:100 │ 1_212.70ns │ 114.00w │ │ │ │ │ core\_array.ml:filter old-filter-eq_zero:1000 │ 23_347.51ns │ 13.00w │ 1_007.00w │ 6.00w │ 0.12% │ │ core\_array.ml:filter old-filter-eq_zero:10000 │ 210_509.83ns │ 13.00w │ 10_007.00w │ 6.00w │ 1.10% │ │ core\_array.ml:filter old-filter-eq_zero:100000 │ 1_912_253.91ns │ 13.00w │ 100_007.01w │ 6.01w │ 10.02% │ │ core\_array.ml:filter new-filter-eq_zero:0 │ 13.70ns │ 14.00w │ │ │ │ │ core\_array.ml:filter new-filter-eq_zero:1 │ 56.56ns │ 18.00w │ │ │ │ │ core\_array.ml:filter new-filter-eq_zero:10 │ 179.42ns │ 27.00w │ │ │ │ │ core\_array.ml:filter new-filter-eq_zero:100 │ 1_254.49ns │ 117.00w │ │ │ │ │ core\_array.ml:filter new-filter-eq_zero:1000 │ 20_968.06ns │ 16.00w │ 1_001.02w │ │ 0.11% │ │ core\_array.ml:filter new-filter-eq_zero:10000 │ 204_299.82ns │ 16.00w │ 10_001.13w │ 0.13w │ 1.07% │ │ core\_array.ml:filter new-filter-eq_zero:100000 │ 2_019_283.81ns │ 16.00w │ 100_001.91w │ 0.91w │ 10.58% │ │ core\_array.ml:filter old-filter-neq_zero:0 │ 12.14ns │ 9.00w │ │ │ │ │ core\_array.ml:filter old-filter-neq_zero:1 │ 32.72ns │ 11.00w │ │ │ │ │ core\_array.ml:filter old-filter-neq_zero:10 │ 219.18ns │ 48.00w │ │ │ │ │ core\_array.ml:filter old-filter-neq_zero:100 │ 1_902.76ns │ 408.00w │ 0.12w │ 0.12w │ │ │ core\_array.ml:filter old-filter-neq_zero:1000 │ 82_032.44ns │ 2_007.00w │ 3_998.20w │ 1_997.20w │ 0.43% │ │ core\_array.ml:filter old-filter-neq_zero:10000 │ 850_234.44ns │ 20_007.00w │ 40_014.86w │ 20_013.86w │ 4.46% │ │ core\_array.ml:filter old-filter-neq_zero:100000 │ 7_345_941.05ns │ 200_007.00w │ 400_407.82w │ 200_406.82w │ 38.49% │ │ core\_array.ml:filter new-filter-neq_zero:0 │ 13.66ns │ 14.00w │ │ │ │ │ core\_array.ml:filter new-filter-neq_zero:1 │ 18.26ns │ 14.00w │ │ │ │ │ core\_array.ml:filter new-filter-neq_zero:10 │ 201.04ns │ 43.00w │ │ │ │ │ core\_array.ml:filter new-filter-neq_zero:100 │ 1_404.33ns │ 313.00w │ │ │ │ │ core\_array.ml:filter new-filter-neq_zero:1000 │ 22_829.70ns │ 2_012.00w │ 1_001.02w │ │ 0.12% │ │ core\_array.ml:filter new-filter-neq_zero:10000 │ 218_872.52ns │ 20_012.00w │ 10_001.21w │ 0.21w │ 1.15% │ │ core\_array.ml:filter new-filter-neq_zero:100000 │ 2_121_340.68ns │ 200_012.00w │ 100_002.77w │ 1.77w │ 11.12% │ │ core\_array.ml:filter old-filter_map-int:0 │ 9.58ns │ 5.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-int:1 │ 68.46ns │ 11.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-int:10 │ 191.66ns │ 32.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-int:100 │ 1_492.60ns │ 257.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-int:1000 │ 57_155.42ns │ 1_005.00w │ 2_507.01w │ 1_005.01w │ 0.30% │ │ core\_array.ml:filter old-filter_map-int:10000 │ 522_177.50ns │ 10_005.00w │ 25_008.54w │ 10_006.54w │ 2.74% │ │ core\_array.ml:filter old-filter_map-int:100000 │ 5_945_405.67ns │ 100_005.00w │ 250_170.69w │ 100_168.69w │ 31.15% │ │ core\_array.ml:filter new-filter_map-int:0 │ 12.03ns │ 10.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-int:1 │ 53.63ns │ 14.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-int:10 │ 164.16ns │ 31.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-int:100 │ 1_263.42ns │ 211.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-int:1000 │ 23_113.12ns │ 1_010.00w │ 1_001.02w │ │ 0.12% │ │ core\_array.ml:filter new-filter_map-int:10000 │ 218_152.23ns │ 10_010.00w │ 10_001.15w │ 0.15w │ 1.14% │ │ core\_array.ml:filter new-filter_map-int:100000 │ 2_217_307.86ns │ 100_010.00w │ 100_002.11w │ 1.11w │ 11.62% │ │ core\_array.ml:filter old-filter_map-float:0 │ 9.32ns │ 5.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-float:1 │ 66.68ns │ 13.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-float:10 │ 182.86ns │ 42.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-float:100 │ 1_496.56ns │ 357.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-float:1000 │ 76_479.74ns │ 2_005.00w │ 3_507.02w │ 2_005.02w │ 0.40% │ │ core\_array.ml:filter old-filter_map-float:10000 │ 694_999.59ns │ 20_005.00w │ 35_011.08w │ 20_009.08w │ 3.64% │ │ core\_array.ml:filter old-filter_map-float:100000 │ 8_694_669.26ns │ 200_005.00w │ 350_476.44w │ 200_474.44w │ 45.56% │ │ core\_array.ml:filter new-filter_map-float:0 │ 12.29ns │ 10.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-float:1 │ 58.24ns │ 16.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-float:10 │ 142.67ns │ 41.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-float:100 │ 1_119.41ns │ 311.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-float:1000 │ 14_262.66ns │ 2_010.00w │ 1_001.02w │ │ 0.07% │ │ core\_array.ml:filter new-filter_map-float:10000 │ 136_448.05ns │ 20_010.00w │ 10_001.23w │ 0.23w │ 0.71% │ │ core\_array.ml:filter new-filter_map-float:100000 │ 1_282_005.01ns │ 200_010.00w │ 100_003.14w │ 2.14w │ 6.72% │ │ core\_array.ml:filter old-filter_map-boxed:0 │ 9.48ns │ 5.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-boxed:1 │ 71.16ns │ 13.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-boxed:10 │ 197.40ns │ 42.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-boxed:100 │ 1_762.40ns │ 357.00w │ │ │ │ │ core\_array.ml:filter old-filter_map-boxed:1000 │ 86_220.67ns │ 2_005.00w │ 3_507.02w │ 2_005.02w │ 0.45% │ │ core\_array.ml:filter old-filter_map-boxed:10000 │ 828_291.42ns │ 20_005.00w │ 35_011.84w │ 20_009.84w │ 4.34% │ │ core\_array.ml:filter old-filter_map-boxed:100000 │ 7_955_395.61ns │ 200_005.00w │ 350_441.44w │ 200_439.44w │ 41.68% │ │ core\_array.ml:filter new-filter_map-boxed:0 │ 14.43ns │ 10.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-boxed:1 │ 59.24ns │ 16.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-boxed:10 │ 198.19ns │ 41.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-boxed:100 │ 1_580.21ns │ 311.00w │ │ │ │ │ core\_array.ml:filter new-filter_map-boxed:1000 │ 52_045.31ns │ 2_010.00w │ 2_011.01w │ 1_010.01w │ 0.27% │ │ core\_array.ml:filter new-filter_map-boxed:10000 │ 479_239.44ns │ 20_010.00w │ 20_012.42w │ 10_011.42w │ 2.51% │ │ core\_array.ml:filter new-filter_map-boxed:100000 │ 4_389_392.06ns │ 200_010.00w │ 200_135.09w │ 100_134.09w │ 23.00% │ │ core\_array.ml:filter old-partition_tf:0 │ 16.55ns │ 16.00w │ │ │ │ │ core\_array.ml:filter old-partition_tf:1 │ 128.08ns │ 29.00w │ │ │ │ │ core\_array.ml:filter old-partition_tf:10 │ 554.15ns │ 111.00w │ │ │ │ │ core\_array.ml:filter old-partition_tf:100 │ 4_853.58ns │ 921.00w │ 0.46w │ 0.46w │ 0.03% │ │ core\_array.ml:filter old-partition_tf:1000 │ 201_289.06ns │ 5_016.00w │ 9_015.21w │ 5_010.21w │ 1.05% │ │ core\_array.ml:filter old-partition_tf:10000 │ 1_796_749.87ns │ 50_016.00w │ 90_040.96w │ 50_035.96w │ 9.41% │ │ core\_array.ml:filter old-partition_tf:100000 │ 19_084_871.85ns │ 500_016.00w │ 902_187.67w │ 502_182.67w │ 100.00% │ │ core\_array.ml:filter new-partition_tf:0 │ 28.29ns │ 23.00w │ │ │ │ │ core\_array.ml:filter new-partition_tf:1 │ 103.78ns │ 31.00w │ │ │ │ │ core\_array.ml:filter new-partition_tf:10 │ 504.10ns │ 96.00w │ │ │ │ │ core\_array.ml:filter new-partition_tf:100 │ 3_869.52ns │ 726.00w │ 0.23w │ 0.23w │ 0.02% │ │ core\_array.ml:filter new-partition_tf:1000 │ 122_807.29ns │ 4_023.00w │ 5_013.04w │ 2_010.04w │ 0.64% │ │ core\_array.ml:filter new-partition_tf:10000 │ 1_197_596.39ns │ 40_023.00w │ 50_020.05w │ 20_017.05w │ 6.28% │ │ core\_array.ml:filter new-partition_tf:100000 │ 10_458_344.09ns │ 400_023.00w │ 500_590.94w │ 200_587.94w │ 54.80% │ └────────────────────────────────────────────────────┴─────────────────┴─────────────┴─────────────┴─────────────┴────────────┘
Binable.Of_sexpable functor.%test_result ... errors in things that come before core_kernel.Stable_unit_test.Make functors, include all test failures rather than just the first. This is useful for updating batches of expected bin_io results when stabilizing a module.Added Float.int63_round_nearest_exn.
val int63_round_nearest_exn : t -> Core_int63.
Changed Hashtbl.sexp_of_t so that keys are sorted in increasing order.
This also applies to the sexp_of_t produced by Hashtbl.Make and Make_binable. Sorting by key is nice when looking at output, as well as in tests, so that the output is deterministic and so that diffs are minimized when output changes.
Info, Error, and Or_error a Stable.V2 module, whose bin_io is the same as the unstable bin_io.Replaced Map.prev_key and next_key with closest_key.
val closest_key : ('k, 'v, 'cmp) t -> [ Greater_or_equal_to | Greater_than | Less_or_equal_to | Less_than ] -> 'k -> ('k * 'v) option
Monad.Make{,2} and Applicative.Make{,2}.round_nearest and int63_round_nearest_exn don't allocate.Added Lazy.T_unforcing module, with a custom sexp_of_t that doesn't force.
This serializer does not support round tripping, i.e. t_of_sexp. It is intended to be used in debug code or <:sexp_of< >> statements. E.g:
type t =
{ x : int Lazy.T_unforcing.t
; y : string
}
with sexp_ofMap.to_sequence and Set.to_sequence to take any combination of upper bound, lower bound, and direction.Map.split.Timing_wheel.fire_past_alarms, which fires alarms in the current time interval's bucket whose time is in the past.Total_map module, for maps where every value of the key type is present in the map.Bigstring.compare and Bigstring.equal.monad.ml into three files: monad.ml, monad.mli, and monad_intf.ml.Core_kernel on Unix, moving Time_ns.pause functions to Core.Hash_queue.create, ?growth_allowed and size, which then get passed to Hashtbl.create.Added a ?strict:unit argument to functions that ordinarily create lazy sexps, like failwiths.
Info.create
Error.create
Error.failwiths
Error.failwithp
Or_error.errorThis makes it easy to force a use to be strict, which is sometimes useful to accurately capture the state of a mutable data structure at the time the error happens, lest it change by the time the error is rendered.
Interned_string module.In Pooled_hashtbl, avoid trying to create arrays bigger than Sys.max_array_length.
The problem affected 32-bit platforms.
Added Quickcheck module.
Supports automated testing with randomly-generated inputs in the style of Haskell's Quickcheck library. Our adaptation supports flexible probability distributions for values of a given type and uniqueness guarantees for generated values.
Set.to_sequence and Set.split have the same interface as Map.to_sequence and Map.split, respectively.Float and Timing_wheel to compile on 32-bit platforms.Lazy.Stable.V1.List.reduce_balanced, which is like reduce, but relies on associativity of f to make nesting of calls to f logarithmic rather than linear in the input list length.String_id.Make_without_pretty_printer.Restricted Time_ns.Span values to be less than 135 years, which ensures the corresponding float Time.Span values have microsecond precision.
Fixed a Time_ns test that recently started failing due to crossing the 135-year boundary.
Reducing the range of Time_ns.Span required adjusting the implementation of Core.Time_ns.Option.Stable.V1, which (accidentally, incorrectly) incorporated the (unstabilized) Core_kernel.Time_ns.Span.min_value as the representation of bid_none and .max_value as ask_none. The prior representation is preserved, but some previously allowed values are no longer allowed and now raise exceptions!
Rope module, the standard data structure for efficient string manipulation.Sequence.unfold_with_and_finish, a variant of unfold_with that can continue the sequence after the inner sequence finishes.Replaced Sequence.cycle with Sequence.cycle_list_exn, to work around a bug in Sequence.cycle raising on the empty sequence.
Sequence.cycle can cause an infinite loop if its input is empty. It is problematic to check whether the input sequence is empty.
* If we check it eagerly, we have to turn `cycle` into
`cycle_eagerly_exn`, and it will evaluate the first element twice.
* If we check it lazily, we might raise an exception in a seemingly
unrelated part of the code, and the usually-good habit of wrapping a
function like `cycle_exn` in `try .. with ..` would not catch it.To get around these issues, [cycle] is changed to accept only lists as inputs, not sequences. It is now called [cycle_list_exn].
Fixed build on Mac OSX.
Fix build when LINUX_EXT or TIMERFD are undefined.
Added Caml.Bytes.
Add an alias for Bytes in Caml. Fixes janestreet/core_kernel#46.
In Container, exposed polymorphic functions individually building container functions using fold or iter.
Exposed polymorphic functions in Core_kernel.Container for individually building each of the Container functions using fold or iter. E.g.:
type ('t, 'elt, 'accum) fold =
't -> init:'accum -> f:('accum -> 'elt -> 'accum) -> 'accum
type ('t, 'elt) iter = 't -> f:('elt -> unit) -> unit
val length : fold:('t, _, int ) fold -> 't -> int
val exists : iter:('t, 'a) iter -> 't -> f:('a -> bool) -> boolDoubly_linked.to_sequence.Hash_queue.sexp_of_t.Hashtbl.merge_into to allow the types of src and dst to be different.Day_of_week.of_string accept additional formats (integers 0-6, full day names).Day_of_week.to_string_long, which produces the full day name.Hashtbl.add_exn to not create a new exception constructor when it raises due to a duplicate key.Map.nth, which returns the nth element of a map, ordered by key rank.Added Binable.Of_binable functors, similar to Sexpable.Of_sexpable
One should use Binable.Of_binable rather than the functionally equivalent Bin_prot.Utils.Make_binable.
Either module, with type ('a, 'b) t = First of 'a | Second of 'b.Added to Univ_map a functor that creates a new Univ_map type in which the type of data is a function of the key's type, with the type function specified by the functor's argument.
Normally, a Univ_map.t stores ('a Key.t * 'a) pairs. This feature lets it store ('a Key.t * 'a Data.t) pairs for a given ('a Data.t).
Day_of_week.Stable be Comparable and Hashable.Fixed a couple Exn unit tests that mistakenly relied on the global setting of Printexc.get_backtrace.
Now the tests locally set it to what they need.
This avoids unit-test failures when running with no OCAMLRUNPARAM set:
File "exn.ml", line 130, characters 2-258: clear_backtrace threw "Assert_failure exn.ml:133:4".
in TEST_MODULE at file "exn.ml", line 127, characters 0-1057Renamed Monad.ignore as Monad.ignore_m, while preserving ignore = ignore_m in existing modules (e.g. Deferred) that used it.
We can later consider those modules on a case-by-case basis to see whether we want to remove ignore.
Set.symmetric_diff.Timing_wheel.reschedule, which reschedules an existing alarm.Applicative.S2, analogous to Monad.S2.Either.Hashtbl.add_or_error and create_with_key_or_error, which use Or_error and are more idiomatic ways of signalling duplicates.Sexpable.Of_sexpable1 functor, for one-parameter type constructors.Made Timing_wheel_ns keys be Int63.t rather than int, so that behavior is consistent on 32-bit and 64-bit machines.
Also, made Timing_wheel.Interval_num an abstract type.
Hid the bytes type in Core.Std, so that type errors refer to string rather than bytes.
Added Bytes module so that people can say Bytes.t if they need to.
Now we get reasonable error messages:
String.length 13
-->
Error: This expression has type int but an expression was expected of type
string
"" + 13
-->
Error: This expression has type string but an expression was expected of type
intTiming_wheel.Replaced Unpack_buffer.unpack with unpack_into and unpack_iter, to avoid allocation.
Unpack_buffer.unpack created a (vector-backed) Core.Std.Queue for each call. When unpacking a buffer containing many values, resizing of the buffer can be costly and in some cases leads to promotions of short-lived data to the major heap.
The new functions avoid allocating the queue:
val unpack_into : ('value, _) t -> 'value Queue.t -> unit Or_error.t
val unpack_iter : ('value, _) t -> f:('value -> unit) -> unit Or_error.tGc.tune.Unit implementation to use Identifiable.Make instead of applying functors separately.val random: unit -> int to Int63.Float.iround_*_exn functions to not allocate in the common case.Fqueue.singleton and Fdeque.singleton.Moved Unix.tm and Unix.strftime from Core_kernel to Core.
Added external time formatting:
float (* seconds *)-> string (* format *) -> string = "..."String_id.Make call Pretty_printer.Register.String_id to allow the pipe character in identifiers.Made List.compare have the usual type from with compare, val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int.
Previously, List.compare's type was:
val compare : 'a t -> 'a t -> cmp:('a -> 'a -> int) -> intMap's and Set's conform to the Stable1 interface.Reworked Hashtbl.find_exn to not allocate.
Previously, Hashtbl.find_exn allocated because it called Hashtbl.find, which allocates an option (partially because Avltree allocates options in its find function).
Added Time_ns module.
A fragment of Core.Std.Time_ns is now in Core_kernel.Std.Time_ns such that Async_kernel can use Time_ns and only depend on Core_kernel.
Dequeue as Deque. Dequeue remains for backward compatibility, but should not be used anymore. Use Deque instead.Fdeque module, a functional version Deque. Deprecate deque-like functions in Fqueue.Added List.is_prefix.
val List.is_prefix : 'a t -> prefix:'a t -> equal:('a -> 'a -> bool) -> boolMade String_id.Make functor generative, which exposes that the result has type t = private string.
Previously the result of String_id.Make didn't expose type t = private string due to a type-checker bug:
Used generative functors, e.g. for Unique_id.
Used generative functors (new feature in 4.02) where previously we used dummy M : sig end arguments in the signature and (struct end) when applying the functor.
Just to note the difference between applicative and generative functors. Suppose we have:
module F (M : sig end) : sig type t endand we apply it several times
module A = F (struct end)
module B = F (struct end)
module C = F (String)
module D = F (String)Then we have that A.t <> B.t but C.t = D.t. This can lead to subtle bugs, e.g. Unique_id.Int (Unit). Note that it is perfectly valid to apply any module to F, even though that is certainly not what we want.
In 4.02, we can explicitly say that functor generates new types, i.e. it is generative. For this we use argument (). So F becomes
module F () : sig type t endYou can only apply F to () or (struct end) but each application yields a new type t.
module A = F ()
module B = F ()
module C = F (struct end)
module D = F (String) (* illegal *)and now A.t, B.t and C.t are all different.
Note that F (struct end) is still allowed but was converted to to F () for consistency with signatures.
Propagated generativity where necessary. If inside a functor we use generative functor that creates new types, then we also need to make the enclosing functor generative.
For functors that don't create types (like Async.Log.Make_global), generative or applicative functors are the same, but the syntax of generative functors is lighter.
Core_kernel.Std.With_return.Source_code_position.t.Weak_hashtbl.create, exposed the ?growth_allowed and ?size arguments of the underlying Hashtbl.create.with compare to Array.Sped up Int.pow.
Benchmarks before:
Name | Time/Run | mWd/Run | Percentage |
|---|---|---|---|
[int_math.ml:int_math_pow] random[ 5] x 10000 | 140_546.89ns | 53.98% | |
[int_math.ml:int_math_pow] random[10] x 10000 | 173_853.08ns | 66.77% | |
[int_math.ml:int_math_pow] random[30] x 10000 | 219_948.85ns | 84.47% | |
[int_math.ml:int_math_pow] random[60] x 10000 | 260_387.26ns | 100.00% | |
[int_math.ml:int_math_pow] 2 ^ 30 | 11.34ns | ||
[int_math.ml:int_math_pow] 2L ^ 30L | 21.69ns | 3.00w | |
[int_math.ml:int_math_pow] 2L ^ 60L | 22.95ns | 3.00w |
and after:
Name | Time/Run | mWd/Run | Percentage |
|---|---|---|---|
[int_math.ml:int_math_pow] random[ 5] x 10000 | 105_200.94ns | 80.78% | |
[int_math.ml:int_math_pow] random[10] x 10000 | 117_365.82ns | 90.12% | |
[int_math.ml:int_math_pow] random[30] x 10000 | 130_234.51ns | 100.00% | |
[int_math.ml:int_math_pow] random[60] x 10000 | 123_621.45ns | 94.92% | |
[int_math.ml:int_math_pow] 2 ^ 30 | 8.55ns | ||
[int_math.ml:int_math_pow] 2L ^ 30L | 22.17ns | 3.00w | 0.02% |
[int_math.ml:int_math_pow] 2L ^ 60L | 22.49ns | 3.00w | 0.02% |
Removed the old, deprecated permission phantom types (read_only, etc.) and replaced them with the new =Perms= types.
The old types had subtyping based on covariance and private types. The new types have subtyping based on contravariance and dropping capabilities.
Renamed read_only as read, since Perms doesn't distinguish between them.
The idiom for the type of a function that only needs read access changed from:
val f : _ t -> ...to
val f : [> read ] t -> ...This mostly hit Iobuf and its users.
String.is_substring.Added With_return.prepend, and exposed With_return.t as contravariant.
(** [prepend a ~f] returns a value [x] such that each call to [x.return] first applies [f]
before applying [a.return]. The call to [f] is "prepended" to the call to the
original [a.return]. A possible use case is to hand [x] over to an other function
which returns ['b] a subtype of ['a], or to capture a common transformation [f]
applied to returned values at several call sites. *)
val prepend : 'a return -> f:('b -> 'a) -> 'b returnMoved the Gc module's alarm functionality into a new Gc.Expert.Alarm module.
The was done because the Gc alarms introduce threading semantics.
Core_kernel.Std: Int_conversions, Ordered_collection_commonRemoved Pooled_hashtbl from Hashable.S, to eliminate a dependency cycle between Int63 and Pool.
This was needed to use Int63 in Pool. Previously, Int63 <- Int <- Hashable <- Pool, which made it impossible to use Int63 in Pool.
So, we are removing the dependency Hashable <- Pool, simplifying Hashable to not include Pooled_hashtbl, and letting users call the Pooled_hashtbl functor directly when necessary.
Pool.Pointer.Id conversions to and from Int63.Pooled_hashtbl.resize allocate less.Pool.pointer_of_id_exn_is_supported, which was always true.with compare to Info, Error, Or_error.Backtrace from CoreIn C stubs, replaced intxx types by intxx_t.
Following this: http://caml.inria.fr/mantis/view.php?id=6517
Fixes #23
Backtrace.get_opt, which is no longer necessary now that Backtrace.get is available on all platforms.Stable, Stable1, Stable2.Core_kernel.Std.Avltree.Removed from Binary_packing a duplicated exception, Pack_signed_32_argument_out_of_range.
Closes #26
Made Info, Error, and Or_error stable.
The new stable serialization format is distinct from the existing unstable serialization format in the respective modules, which wasn't changed.
Sequence.Step.sexp_of_t.String_id have Stable_containers.Comparable.Gc.disable_compaction to require an allocation_policy.Option match Invariant.S1.Sequence.filter, compare, and sexp_of_t.Added With_return.with_return_option, abstracting a common pattern of with_return.
val with_return : ('a return -> 'a ) -> 'a
val with_return_option : ('a return -> unit) -> 'a optionPrintexc.set_uncaught_exception_handler, new in OCaml 4.02.Day_of_week representation to a normal variant.Exn.handle_uncaught so that if it is unable to print, it still does exit 1.Sexp.of_sexp_allow_extra_fields, previously in Core_extended.Sexp.Exn.raise_without_backtrace to use raise_notrace, new in OCaml 4.02.Float functions for converting to and from IEEE sign/exponent/mantissa.String.Caseless module, which compares and hashes strings ignoring case.Reimplemented Type_equal.Id using extensible types (new in OCaml 4.02), removing a use of Obj.magic.
Changed Type_equal.Id.same_witness to return option rather than Or_error, which allows it to be implemented without allocation.
Unix module. Applications using core_kernel should be able to link without unix.cma again.Char.is_whitespace accept \f and \v as whitespace, matching C.{Hashable,Comparable}.S_binable in Day_of_week and Month.Set_once.set.Type_equal.Lift3 functor.Replaced occurrences of Obj.magic 0 with Obj.magic None.
With the former the compiler might think the destination type is always an integer and instruct the GC to ignore references to such values. The latter doesn't have this problem as options are not always integers.
String_id.of_string faster.Added Bigstring functions for reading and writing the size-prefixed bin-io format.
bin_prot_size_header_lengthwrite_bin_protread_bin_protread_bin_prot_verbose_errors{Info,Error}.to_string_mach which produces a single-line sexp from an Error.t.{Info,Error}.createf, for creation from a format string.Added new Perms module with phantom types for managing access control.
This module supersedes the read_only, read_write, and immutable phantom types, which are now deprecated, and will be removed in the future. This module uses a different approach using sets of polymorphic variants as capabilities, and contravariant subtyping to express dropping capabilities.
This approach fixes a bug with the current phantom types used for Ref.Permissioned in which immutable types aren't guaranteed to be immutable:
let r = Ref.Permissioned.create 0
let r_immutable = (r : (int, immutable) Ref.Permissioned.t)
let () = assert (Ref.Permissioned.get r_immutable = 0)
let () = Ref.Permissioned.set r 1
let () = assert (Ref.Permissioned.get r_immutable = 1)The bug stems from the fact that the phantom-type parameter is covariant, which allows OCaml's relaxed value restriction to kick in, which allows one to create a polymorphic value, which can then be viewed as both immutable and read write. Here's a small standalone example to demonstrate:
module F (M : sig
type +'z t
val create : int -> _ t
val get : _ t -> int
val set : read_write t -> int -> unit
end) : sig
val t : _ M.t
end = struct
let t = M.create 0
let t_immutable = (t : immutable M.t)
let () =
assert (M.get t_immutable = 0);
M.set t 1;
assert (M.get t_immutable = 1);
;;
endThe new approach fixes the problem by making the phantom-type parameter contravariant, and using polymorphic variants as capabilities to represent what operations are allowed. Contravariance allows one to drop capabilities, but not add them.
Int.Hex module, which has hexadecimal sexp/string conversions.Gc.major_plus_minor_words, for performance reasons.Pooled_hashtbl.resize function, to allow preallocating a table of the desired size, to avoid growth at an undesirable time.Pooled_hashtbl.on_grow callback, to get information about hashtbl growth.Changed Hashable.Make to not export a Hashable module.
The Hashable module previously exported was useless, and shadowed Core.Std.Hashable.
Common.does_raise to Exn.does_raise, to make it easier to find.Float.one, minus_one, and ~-. (fixes #12).Removed Core.Std.unimplemented and renamed it as Or_error.unimplemented.
It is not used enough to live in the global namespace.
Fix build on FreeBSD
Closes #10
Added functions to Container interface: sum, min_elt, max_elt.
(** Returns the sum of [f i] for i in the container *)
val sum
: (module Commutative_group.S with type t = 'sum)
-> t -> f:(elt -> 'sum) -> 'sum
(** Returns a min (resp max) element from the collection using the provided [cmp]
function. In case of a tie, the first element encountered while traversing the
collection is returned. The implementation uses [fold] so it has the same
complexity as [fold]. Returns [None] iff the collection is empty. *)
val min_elt : t -> cmp:(elt -> elt -> int) -> elt option
val max_elt : t -> cmp:(elt -> elt -> int) -> elt optionMade Core_hashtbl_intf more flexible. For instance supports modules that require typereps to be passed when creating a table.
Address the following issues:
The type ('a, 'b, 'z) create_options needs to be consistently used so that b corresponds with the type of data values in the returned hash table. The type argument was wrong in several cases.
Added the type ('a, 'z) map_options to Accessors so that map-like functions -- those that output hash tables of a different type than they input -- can allow additional arguments.
Dequeue's bin_prot implementation that caused it to raise when deserializing an empty dequeue.Container.Make's interface match Monad.Make.or in favor of ||.Arg (which was already deprecated in favor of Command).Bag.fold_elt with Bag.filter.Memo.general now raises on non-positive cache_size_bound.Option.apply.Result.call, Result.apply.Moved Quichcheck to core_extended.
It should not be used in new code.
Removed our custom C stub for closing channels, reverting to the one in the OCaml runtime.
A long time ago we found that the OCaml runtime did not release the lock before calling close on the fd underlying a channel. On some filesystems (e.g. smb, nfs) this could cause a runtime hang. We filed a bug with INRIA and wrote our own close function which In_channel calls to this day. The bug has long been fixed, and our function is probably buggy, so this reverts us to the runtime's close.
Added Float.{of,to}_int64_preserve_order, which implement the order-preserving zero-preserving bijection between non-NaN floats and 99.95% of Int64's.
Used the new function to improve one_ulp, which is now exposed:
(** The next or previous representable float. ULP stands for "unit of least precision",
and is the spacing between floating point numbers. Both [one_ulp `Up infinity] and
[one_ulp `Down neg_infinity] return a nan. *)
val one_ulp : [`Up | `Down] -> t -> tMap.symmetric_diff to return a Sequence.t instead of a list.Sequence.filter_map.Stable_unit_test.Make_sexp_deserialization_test's error message so that it includes the expected sexp.In Bigstring, made many operations use compiler primitives new in OCaml 4.01.
Exposed Bigstring.get and set as compiler primitives in the interface.
Added Bigstring.unsafe_get_int64_{le,be}_trunc.
Error round trip exn, i.e. Error.to_exn (Error.of_exn exn) = exn.failwiths an optional ?here:Lexing.position argument.with typerep to Flags.S.List.dedup [] to return immediately.Added data argument to polymorphic type Hashtbl_intf.Creators.create_options.
This allows implementations of Hashtbl_intf.Creators to have constructor arguments that depend on the type of both key and data values. For example:
module type Hashtbl_creators_with_typerep =
Hashtbl_intf.Creators
with type ('key, 'data, 'z) create_options
= typerep_of_key:'key Typerep.t
-> typerep_of_data:'data Typerep.t
-> 'zImproved the interface for getting Monad.Make to define map in terms of bind.
Instead of passing a map function and requiring everyone who wants to define map using bind to call a special function, we use a variant type to allow the user to say what they want:
val map : [ `Define_using_bind
| `Custom of ('a t -> f:('a -> 'b) -> 'b t)
]Improved the performance of many Dequeue functions.
Previously, many Dequeue.dequeue-type functions worked by raising and then catching an exception when the dequeue is empty. This is much slower than just testing for emptiness, which is what the code now does.
This improves the performance of Async.Writer, which uses Dequeue.dequeue_front.
Added a Sequence module that implements polymorphic, on-demand sequences.
Also implemented conversion to Sequence.t from various containers.
Improved the explicitness and expressiveness of Binary_searchable.binary_search.
binary_search now takes an additional (polymorphic variant) argument describing the relationship of the returned position to the element being searched for.
val binary_search
: ?pos:int
-> ?len:int
-> t
-> compare:(elt -> elt -> int)
-> [ `Last_strictly_less_than (** {v | < elt X | v} *)
| `Last_less_than_or_equal_to (** {v | <= elt X | v} *)
| `Last_equal_to (** {v | = elt X | v} *)
| `First_equal_to (** {v | X = elt | v} *)
| `First_greater_than_or_equal_to (** {v | X >= elt | v} *)
| `First_strictly_greater_than (** {v | X > elt | v} *)
]
-> elt
-> int optionAdded a new function, Binary_searchable.binary_search_segmented, that can search an array consisting of two segments, rather than ordered by compare.
(** [binary_search_segmented ?pos ?len t ~segment_of which] takes an [segment_of]
function that divides [t] into two (possibly empty) segments:
{v
| segment_of elt = `Left | segment_of elt = `Right |
v}
[binary_search_segmented] returns the index of the element on the boundary of the
segments as specified by [which]: [`Last_on_left] yields the index of the last
element of the left segment, while [`First_on_right] yields the index of the first
element of the right segment. It returns [None] if the segment is empty.
By default, [binary_search] searches the entire [t]. One can supply [?pos] or
[?len] to search a slice of [t].
[binary_search_segmented] does not check that [segment_of] segments [t] as in the
diagram, and behavior is unspecified if [segment_of] doesn't segment [t]. Behavior
is also unspecified if [segment_of] mutates [t]. *)
val binary_search_segmented
: ?pos:int
-> ?len:int
-> t
-> segment_of:(elt -> [ `Left | `Right ])
-> [ `Last_on_left | `First_on_right ]
-> int optionQueue match Binary_searchable.S1.Gc.Stat and Gc.Control match Comparable.Type_immediacy that were fragile due to GC.Added to String functions for substring search and replace, based on the KMP algorithm.
Here are some benchmarks, comparing Re2 for a fixed pattern, Mark's kmp from extended_string, and this implementation ("needle").
The pattern is the usual abacabadabacabae.... The text looks similar, with the pattern occurring at the very end.
For =Re2= and =Needle= search benchmarks, the pattern is preprocessed in advance, outside of the benchmark.
FWIW: I've also tried searches with pattern size = 32767, but =Re2= blows up, saying:
re2/dfa.cc:447: DFA out of memory: prog size 32771 mem 2664898Name | Time/Run | mWd/Run | mjWd/Run | Prom/Run | Percentage |
|---|---|---|---|---|---|
create_needle_15 | 102.56ns | 21.00w | |||
re2_compile_15 | 6_261.48ns | 3.00w | 0.01% | ||
create_needle_1023 | 13_870.48ns | 5.00w | 1_024.01w | 0.03% | |
re2_compile_1023 | 107_533.32ns | 3.03w | 0.24% | ||
create_needle_8191 | 90_107.02ns | 5.00w | 8_192.01w | 0.20% | |
re2_compile_8191 | 1_059_873.47ns | 3.28w | 0.28w | 2.37% | |
create_needle_524287 | 6_430_623.96ns | 5.00w | 524_288.09w | 14.35% | |
re2_compile_524287 | 44_799_605.83ns | 3.77w | 0.77w | 100.00% | |
needle_search_15_95 | 349.65ns | 4.00w | |||
re2_search_15_95 | 483.11ns | ||||
mshinwell_search_15_95 | 1_151.38ns | 781.01w | |||
needle_search_15_815 | 2_838.85ns | 4.00w | |||
re2_search_15_815 | 3_293.06ns | ||||
mshinwell_search_15_815 | 8_360.57ns | 5_821.07w | 0.55w | 0.55w | 0.02% |
needle_search_15_2415 | 8_395.84ns | 4.00w | 0.02% | ||
re2_search_15_2415 | 9_594.14ns | 0.02% | |||
mshinwell_search_15_2415 | 24_602.09ns | 17_021.16w | 1.62w | 1.62w | 0.05% |
needle_search_1023_6143 | 14_825.50ns | 4.00w | 0.03% | ||
re2_search_1023_6143 | 40_926.59ns | 0.09% | |||
mshinwell_search_1023_6143 | 81_930.46ns | 49_149.66w | 1_025.65w | 1.65w | 0.18% |
needle_search_1023_52223 | 126_465.96ns | 4.00w | 0.28% | ||
re2_search_1023_52223 | 365_359.98ns | 0.82% | |||
mshinwell_search_1023_52223 | 527_323.73ns | 371_715.39w | 1_033.17w | 9.17w | 1.18% |
needle_search_1023_154623 | 377_539.53ns | 4.00w | 0.84% | ||
re2_search_1023_154623 | 1_001_251.93ns | 2.23% | |||
mshinwell_search_1023_154623 | 1_499_835.01ns | 1_088_518.15w | 1_033.19w | 9.19w | 3.35% |
needle_search_8191_49151 | 115_223.31ns | 4.00w | 0.26% | ||
re2_search_8191_49151 | 559_487.38ns | 1.25% | |||
mshinwell_search_8191_49151 | 653_981.19ns | 393_219.50w | 8_201.01w | 9.01w | 1.46% |
needle_search_8191_417791 | 976_725.24ns | 4.00w | 2.18% | ||
re2_search_8191_417791 | 4_713_965.69ns | 10.52% | |||
mshinwell_search_8191_417791 | 4_224_417.93ns | 2_973_709.32w | 8_202.37w | 10.37w | 9.43% |
needle_search_8191_1236991 | 2_912_863.78ns | 4.00w | 6.50% | ||
re2_search_8191_1236991 | 14_039_230.59ns | 31.34% | |||
mshinwell_search_8191_1236991 | 11_997_713.73ns | 8_708_130.87w | 8_202.47w | 10.47w | 26.78% |
Added to Set functions for converting to and from a Map.t.
val to_map : ('key, 'cmp) t -> f:('key -> 'data) -> ('key, 'data, 'cmp) Map.t
val of_map_keys : ('key, _, 'cmp) Map.t -> ('key, 'cmp) tThis required adding some additional type trickery to Core_set_intf to indicate that the comparator for a given module may or may not be fixed.
Added an optional iter parameter to Container.Make.
A direct implementation of iter is often more efficient than defining iter in terms of fold, and in these cases, the results of Container.Make that are defined in terms of iter will be more efficient also.
Int.pow (and for other integer types), for bounds-checked integer exponentiation.Hashtbl.for_all and for_alli.Added Float.to_padded_compact_string for converting a floating point number to a lossy, compact, human-readable representation.
E.g., 1_000_001.00 becomes "1m ".
Tweaked the form of the definition of Blang.Stable.V1.
Removed a type t_ that is not necessary now that we can use nonrec without triggering spurious warnings.
Added inline benchmarks for Array
Here are some of the results from the new benchmarks, with some indexed tests dropped.
Name | Time/Run | mWd/Run | mjWd/Run |
|---|---|---|---|
[core_array.ml:Alloc] create:0 | 13.65ns | ||
[core_array.ml:Alloc] create:100 | 99.83ns | 101.00w | |
[core_array.ml:Alloc] create:255 | 201.32ns | 256.00w | |
[core_array.ml:Alloc] create:256 | 1_432.43ns | 257.00w | |
[core_array.ml:Alloc] create:1000 | 5_605.58ns | 1_001.01w | |
[core_array.ml:Blit.Poly] blit (tuple):10 | 87.10ns | ||
[core_array.ml:Blit.Poly] blito (tuple):10 | 112.14ns | 2.00w | |
[core_array.ml:Blit.Poly] blit (int):10 | 85.25ns | ||
[core_array.ml:Blit.Poly] blito (int):10 | 107.23ns | 2.00w | |
[core_array.ml:Blit.Poly] blit (float):10 | 84.71ns | ||
[core_array.ml:Blit.Poly] blito (float):10 | 86.71ns | 2.00w | |
[core_array.ml:Blit.Int] blit:10 | 19.77ns | ||
[core_array.ml:Blit.Int] blito:10 | 23.54ns | 2.00w | |
[core_array.ml:Blit.Float] blit:10 | 19.87ns | ||
[core_array.ml:Blit.Float] blito:10 | 24.12ns | 2.00w | |
[core_array.ml:Is empty] Polymorphic '=' | 18.21ns | ||
[core_array.ml:Is empty] Array.equal | 8.08ns | 6.00w | |
[core_array.ml:Is empty] phys_equal | 2.98ns | ||
[core_array.ml:Is empty] Array.is_empty (empty) | 2.98ns | ||
[core_array.ml:Is empty] Array.is_empty (non-empty) | 3.00ns |
Thread_safe_queue to coreGeneralized the type of Exn.handle_uncaught_and_exit to (unit -> 'a) -> 'a.
In the case where handle_uncaught_and_exit succeeds, it can return the value of the supplied function.
It's type had been:
val handle_uncaught_and_exit : (unit -> never_returns) -> never_returnsAdded Int.round* functions for rounding to a multiple of another int.
val round : ?dir:[ `Zero | `Nearest | `Up | `Down ] -> t -> to_multiple_of:t -> t
val round_towards_zero : t -> to_multiple_of:t -> t
val round_down : t -> to_multiple_of:t -> t
val round_up : t -> to_multiple_of:t -> t
val round_nearest : t -> to_multiple_of:t -> tThese functions were added to Int_intf.S, implemented by Int, Nativeint, Int32, and Int64.
Various int modules were also lightly refactored to make it easier in the future to implement common operators available for all modules implementing the int interface via a functor to share the code.
Error.to_string_hum_deprecated that is the same as Error.to_string_hum pre 109.61.Changed Error.to_string_hum so that Error.to_string_hum (Error.of_string s) = s.
This fixed undesirable sexp escaping introduced in 109.61 and restores the pre-109.61 behavior for the special case of Error.of_string. A consequence of the removal of the custom to_string_hum converter in 109.61 was that:
Error.to_string_hum (Error.of_string s) =
Sexp.to_string_hum (Sexp.Atom s)That introduced sexp escaping of s.
Added to Doubly_linked functions for moving an element within a list.
val move_to_front : 'a t -> 'a Elt.t -> unit
val move_to_back : 'a t -> 'a Elt.t -> unit
val move_after : 'a t -> 'a Elt.t -> anchor:'a Elt.t -> unit
val move_before : 'a t -> 'a Elt.t -> anchor:'a Elt.t -> unitImproved Core_map_unit_tests.Unit_tests to allow arbitrary data in the map, not just ints.
This was done by eta expansion.
Changed Queue from a linked to an array-backed implementation.
Renamed the previous implementation to Linked_queue.
Renamed transfer, which was constant time, as blit_transfer, which is linear time.
Removed partial_iter. One can use with_return.
Added singleton, filter, get, set.
Error and Info, changed to_string_hum to use sexp_of_t and Sexp.to_string_hum, rather than a custom string format.Validate.errors to be a sexp.Hashtbl.of_alist_or_error and Map.of_alist_or_error.String_id.Make functor, which includes a module name for better error messages.Bucket.size.Changed the default for Debug.should_print_backtrace to be false rather than true.
Usually the backtraces are noise.
Removed the tuning of gc parameters built in to Core, so that the default is now the stock OCaml settings.
Such tuning doesn't belong in Core, but rather done per application. Also, the Core settings had fallen way out of date, and not kept up with changes in the OCaml runtime settings. We have one example (lwt on async) where the Core settings significantly slowed down a program.
Added Exn.raise_without_backtrace, to raise without building a backtrace.
raise_without_backtrace never builds a backtrace, even when Backtrace.am_recording ().
with_return faster by using Exn.raise_without_backtrace.with_return to detect usage of a return after its creating with_return has returned.Gc.keep_alive, which ensures its argument is live at the point of the call.Sexp.With_text module, which keeps a value and the a sexp it was generated from, preserving the original formatting.Moved all of the Gc module into Core_kernel.
Part of the Gc module used to be in Core because it used threads. But it doesn't use threads anymore, so can be all in Core_kernel.
Stable.Map and Set have with compare.Added String.rev.
Closes janestreet/core#16
We will not add String.rev_inplace, as we do not want to encourage mutation of strings.
Univ_map.Key equivalent to Type_equal.Id.Added Univ.view, which exposes Univ.t as an existential, type t = T : 'a Id.t * 'a -> t.
Exposing the existential makes it possible to, for example, use Univ_map.set to construct a Univ_map.tfrom a list of Univ.ts.
This representation is currently the same as the underlying representation, but to make changes to the underlying representation easier, it has been put in a module Univ.View.
with typerep to many Core types.Flat_queue to raise if the queue is mutated during iteration.Map.merge to run in linear time.Added Float.to_string_round_trippable, which produces a string that loses no precision but (usually) uses as few digits as possible.
This can eliminate noise at the end (e.g. 3.14 not 3.1400000000000001243).
Benchmarks:
New sexp:
Name | Time/Run | mWd/Run | Percentage |
|---|---|---|---|
new Float.sexp_of 3.14 | 463.28ns | 6.00w | 48.88% |
new Float.sexp_of e | 947.71ns | 12.00w | 100.00% |
Old sexp:
Name | Time/Run | mWd/Run | Percentage |
|---|---|---|---|
old Float.sexp_of 3.14 | 841.99ns | 178.00w | 98.03% |
old Float.sexp_of e | 858.94ns | 178.00w | 100.00% |
Much of the speedup in the 3.14 case comes from the fact that format_float "%.15g" is much faster than sprintf "%.15g". And of course the above does not capture any of the benefits of dealing with shorter strings down the road.
Here are some detailed benchmarks of the various bits and pieces of what's going on here:
Name | Time/Run | mWd/Run | Percentage |
|---|---|---|---|
format_float '%.15g' 3.14 | 335.96ns | 2.00w | 32.71% |
format_float '%.17g' 3.14 | 394.18ns | 4.00w | 38.38% |
format_float '%.20g' 3.14 | 459.79ns | 4.00w | 44.77% |
format_float '%.40g' 3.14 | 638.06ns | 7.00w | 62.13% |
sprintf '%.15g' 3.14 | 723.71ns | 165.00w | 70.47% |
sprintf '%.17g' 3.14 | 803.44ns | 173.00w | 78.23% |
sprintf '%.20g' 3.14 | 920.78ns | 176.00w | 89.66% |
sprintf '%.40g' 3.14 | 990.09ns | 187.00w | 96.41% |
format_float '%.15g' e | 357.59ns | 4.00w | 34.82% |
format_float '%.17g' e | 372.16ns | 4.00w | 36.24% |
format_float '%.20g' e | 434.59ns | 4.00w | 42.32% |
format_float '%.40g' e | 592.78ns | 7.00w | 57.72% |
sprintf '%.15g' e | 742.12ns | 173.00w | 72.26% |
sprintf '%.17g' e | 747.92ns | 173.00w | 72.83% |
sprintf '%.20g' e | 836.30ns | 176.00w | 81.43% |
sprintf '%.40g' e | 1_026.96ns | 187.00w | 100.00% |
valid_float_lexem 12345678901234567 | 76.29ns | 9.00w | 7.43% |
valid_float_lexem 3.14 | 9.28ns | 5.00w | 0.90% |
float_of_string 3.14 | 130.19ns | 2.00w | 12.68% |
float_of_string 1234567890123456.7 | 184.33ns | 2.00w | 17.95% |
to_string 3.14 | 316.47ns | 7.00w | 30.82% |
to_string_round_trippable 3.14 | 466.02ns | 9.00w | 45.38% |
to_string e | 315.41ns | 7.00w | 30.71% |
to_string_round_trippable e | 949.12ns | 15.00w | 92.42% |
Float.min_positive_value with min_positive_normal_value and min_positive_subnormal_value.Float.O: abs, of_float, and Robustly_comparable.S.Small improvements to the Heap module.
Implemented Heap.iter directly rather than in terms of fold.
In heap.ml, fixed the idiom for using Container.Make.
Int.O and other Int*.O modules, with arithmetic operators, infix comparators, and a few useful arithmetic values.Int.( ~- ), for unary negation.Pool.unsafe_free.Percent module.Binary_packing module functions for packing and unpacking signed 64-bit ints in little- and big-endian.Changed the Comparator interfaces to no longer have with bin_io or with sexp.
The Comparator interfaces are now just about having a comparator.
Also, renamed type comparator as type comparator_witness. And, removed Comparator.S_binable, since one can use:
type t with bin_io
include Comparator.S with type t :` tChanged Comparator.Make to return a module without a type t, like other *able functors,
This made it possible to remove the signature constraint when Comparator.Make is applied.
Made Comparable.S_binable be like Comparable.S and not have type t with sexp.
The following two functors now fail to type check:
module F1 (M : Comparable.S ) : sig type t with sexp end ` M
module F2 (M : Comparable.S_binable) : sig type t with sexp end ` Mwhereas previously F1 was rejected and F2 was accepted.
Changed the Monad.Make functor to require a val map argument.
This was done since we almost always want a specialized map, and we kept making the mistake of not overriding the generic one in the three places needed.
Added Monad.map_via_bind, which one can use to create a standard map function using bind and return.
Removed unnecessary signature constraints on the result of applying Monad.Make.
Some time ago, Monad.Make changed from returning:
S with type 'a t ` 'a M.tto returning:
S with type 'a t :` 'a M.tso we no longer need to constrain the result of Monad.Make at its uses to remove t.
String.exists and String.for_all to iterate by increasing index rather than decreasing.with compare to module Ref.Flags be Comparable, with the order consistent with bitwise subset.Cleaned up the implementation of Union_find.
Improvemed the code in union_find.ml:
Added Float.O, a sub-module intended to be used with local opens.
The idea is to be able to write expressions like:
Float.O.((3. + 4.) > 6. / 2.)This idiom is expected to be extended to other modules as well.
sexp_of_t converter to Type_equal.Id.Univ.Constr with Type_equal.Id.Debug.eprintf, analogous to eprint and eprints.Error.to_info and of_info.Significantly sped up Float.iround_* functions.
For iround_down_exn, the new version appears to use about 25% of the CPU time of the old version on non-negative floats. For negative floats it uses around 60% of the CPU time.
Name | Time (ns) | % of max |
|---|---|---|
old iround_down_exn pos | 15.02 | 95.23 |
new iround_down_exn pos | 3.75 | 23.75 |
old iround_down_exn neg | 15.78 | 100.00 |
new iround_down_exn neg | 9.80 | 62.10 |
Binary_searchable.Make functor to core, and used it in Array and Dequeue.Bounded_int_table to match Invariant.S2.Pool support for 10-, 11-, and 12- tuples.Added functions to the Gc module to get usage information without allocating.
Added these functions, all of type unit -> int:
minor_collections
major_collections
heap_words
heap_chunks
compactions
top_heap_wordsThey all satisfy:
Gc.f () = (Gc.quick_stat ()).Gc.Stat.fThey all avoid the allocation of the stat record, so one can monitor the garbage collector without perturbing it.
Changed Blang.bind to short-circuit And, Or, and If expressions.
For example if bind t1 f false, then bind (and_ t1 t2) false, and will not evaluate bind t2 f.
Dequeue.get as get_opt, and get_exn as get, to be consistent with other containers which don't use the _exn suffix for subscripting exceptions.Source_code_position.to_sexp_hum, in favor of sexp_of_t_hum, which works smoothly with with sexp.Flat_queue_unit_tests to run Flat_queue.invariant, which was mistakenly not being used.Implemented Dequeue.iter directly, instead of as a specialization of fold.
Extended random tests to cover iter.
Added Array.is_sorted_strictly and List.is_sorted_strictly.
val is_sorted_strictly : 'a t -> cmp:('a -> 'a -> int) -> boolAdded Array.find_consecutive_duplicate and List.find_consecutive_duplicate.
val find_consecutive_duplicate : 'a t -> equal:('a -> 'a -> bool) -> ('a * 'a) optionAdded Array.truncate, which changes (shortens) the length of an array.
val truncate : _ t -> len:int -> unitBounded_int_table.remove to show the data structure's details.Float.iround_lbound and iround_ubound, the bounds for rounding to int.Hashtbl.similar, which is like equal, but allows the types of the values in the two tables to differ.Added Pool.Pointer.phys_compare, which is analagous to phys_equal, and does not require an argument comparison function.
val phys_compare : 'a t -> 'a t -> intPool.Debug's output types are the same as its input types.Added Map.of_alist_reduce.
This function is a natural addition alongside of_alist_fold. Its advantage is that it does not require an init argument like of_alist_fold. Moreover, it does not involve option types, like List.reduce does in order to handle the empty list case.
Heap.iter directly instead of in terms of fold.Made Hashtbl.Poly.hash equal Caml.Hashtbl.hash, and changed changed String.hash and Float.hash to match OCaml's hash function.
Previously, Core.Poly.hash had been defined as:
let hash x = hash_param 10 100 xThis fell out of sync with OCaml's hash function, and was providing worse hash values.
Fixed Obj_array.singleton to never create a float array.
Also made it clearer that Obj_array.copy could never create a float array.
Changed Pool.create to allow zero-length pools.
Previously, Pool.create ~capacity:0 had raised, which made it easy to write code that blows up on edge cases for no apparent reason. For example, Heap.copy was written in a way that copying an empty heap would blow up (regardless of its capacity), and Heap.of_array would also blow up on an empty array.
Added String.split_lines.
(** [split_lines t] returns the list of lines that comprise [t]. The lines do
not include the trailing ["\n"] or ["\r\n"]. *)
val split_lines : t -> t listwith compare to List.Assoc.t.Pooled_hashtbl.create handle non-positive and very large sizes in the same way as Core.Hashtbl.Added is_error, is_ok, and does_raise to Core.Std.
let is_error ` Result.is_error
let is_ok ` Result.is_ok
val does_raise : (unit -> _) -> boolReimplemented Heap and reworked the interface to be more standard.
The new implementation uses pairing heaps and Pool.
Added a module Pool.Unsafe, which is like Pool, except that create doesn't require an initial value.
This makes it unsafe to access pool pointers after they have been freed. But it is useful for situations when one isn't able to create an initial value, e.g. Core.Heap.
Removed Time.to_localized_string and Time.to_string_deprecated.
These did not include the time-zone offset. Instead, use Time.to_string and Time.to_string_abs, which do include the time-zone offset.
Exposed that Int63.t = private int on 64-bit machines.
This lets the OCaml compiler avoid caml_modify when dealing with it.
Added Gc stat functions that don't allocate: Gc.minor_words, Gc.major_words, Gc.promoted_words.
Added the following Gc functions:
Gc.minor_words : unit -> int
Gc.major_words : unit -> int
Gc.promoted_words : unit -> intsuch that these functions cause no allocations by themselves. The assumption being that 63-bit ints should be large enough to express total allocations for most programs. On 32-bit machines the numbers may overflow and these functions are not as generally useful.
These functions were added because doing memory allocation debugging with Gc.quick_stat as the primary means of understanding allocations is difficult: tracking down allocations of the order of a few hundred words in a hot loop by putting in lots of quick_stat statements becomes too intrusive because of the memory allocations they cause.
Here are some benchmarks of existing Gc functions and the newly added functions:
$ ./test_bench.exe -q 2 -clear name time +alloc +time-err
Estimated testing time 12s (change using -quota SECS).Name | Time (ns) | 95% ci | Time R^2 | Minor |
|---|---|---|---|---|
quick_stat | 92.16 | +0.72 -0.64 | 1.00 | 23.00 |
counters | 33.63 | +0.26 -0.23 | 1.00 | 10.00 |
allocated_bytes | 37.89 | +0.34 -0.32 | 1.00 | 12.00 |
minor_words | 4.63 | +0.03 -0.02 | 1.00 | |
major_words | 4.36 | +0.02 -0.02 | 1.00 | |
promoted_words | 4.10 | +0.03 -0.02 | 1.00 |
Added a new module, Flat_queue, which is a queue of flat tuples.
This is essentially:
('a1 * .. * 'aN) Queue.tHowever the queue is implemented as a Flat_array, so the tuples are layed out flat in the array and not allocated.
Bounded_int_table.remove's error message when it detects an internal inconsistency.Debug module.Invariant.invariant to take _here_ rather than a string.Float satisfy the Identifiable interface.val Option.merge: 'a t -> 'a t -> f:('a -> 'a -> 'a) -> 'a t.val Validate.failf : ('a, unit, string, t) format4 -> 'a.Validated.Make_binable, made it possible to apply the validation function when un-bin-io-ing a value.Added module Pooled_hashtbl to module type Hashable.
This is an alternative implementation to Core.Hashtbl. It uses a standard linked list to resolve hash collisions, and Pool to manage the linked-list nodes.
Lazy: dropped the lazy_ prefix from is_val, from_val, and from_fun.Core.Blit, which codifies the type, implementation, and unit-testing of blit functions.Added remove_zero_flags option to Flags.Make, to support flags that are zero.
This fixes a problem with Flags.Make on CentOS 5 because O_CLOEXEC is 0 there.
Removed Pool.None, and folded Pool.Obj_array into Pool proper.
Pool.None had its day, but Pool.Obj_array dominates it, so we don't need it any more.
Moved all the contents of the Zero library into Core, mostly into Core_kernel.
We want to start using Zero stuff more in Core, which couldn't be done with Zero as a separate library.
Everything moved into Core_kernel, except for Timing_wheel, which moved into Core proper, due to its dependence on Time.
Flat_tuple_array as Flat_array.Added Dequeue.{front,back}_index_exn
These are more efficient than using {front,back}_index and then Option.value_exn.
Core.String.unsafe_{get,set}.