1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
open Kaun
type config = {
learning_rate : float;
gamma : float;
epsilon_start : float;
epsilon_end : float;
epsilon_decay : float;
batch_size : int;
buffer_capacity : int;
target_update_freq : int;
}
let default_config =
{
learning_rate = 0.001;
gamma = 0.99;
epsilon_start = 1.0;
epsilon_end = 0.01;
epsilon_decay = 1000.0;
batch_size = 32;
buffer_capacity = 10_000;
target_update_freq = 10;
}
type t = {
q_network : module_;
mutable q_params : Rune.float32_elt params;
target_network : module_;
mutable target_params : Rune.float32_elt params;
optimizer : Rune.float32_elt Optimizer.gradient_transformation;
mutable opt_state : Rune.float32_elt Optimizer.opt_state;
replay_buffer :
( (float, Bigarray.float32_elt) Rune.t,
(int32, Bigarray.int32_elt) Rune.t )
Fehu.Buffer.Replay.t;
mutable rng : Rune.Rng.key;
n_actions : int;
config : config;
}
type update_metrics = {
episode_return : float;
episode_length : int;
epsilon : float;
avg_q_value : float;
loss : float;
}
let create ~q_network ~n_actions ~rng config =
let keys = Rune.Rng.split ~n:2 rng in
let q_params = init q_network ~rngs:keys.(0) ~dtype:Rune.float32 in
let target_params = Ptree.copy q_params in
let optimizer = Optimizer.adam ~lr:config.learning_rate () in
let opt_state = optimizer.init q_params in
let replay_buffer =
Fehu.Buffer.Replay.create ~capacity:config.buffer_capacity
in
{
q_network;
q_params;
target_network = q_network;
target_params;
optimizer;
opt_state;
replay_buffer;
rng = keys.(1);
n_actions;
config;
}
let predict t obs ~epsilon =
let obs_shape = Rune.shape obs in
let obs_batched =
if Array.length obs_shape = 1 then
let features = obs_shape.(0) in
Rune.reshape [| 1; features |] obs
else obs
in
let keys = Rune.Rng.split t.rng ~n:2 in
t.rng <- keys.(0);
let sample_rng = keys.(1) in
let uniform_sample = Rune.Rng.uniform sample_rng Rune.float32 [| 1 |] in
let r = (Rune.to_array uniform_sample).(0) in
if r < epsilon then (
let keys = Rune.Rng.split t.rng ~n:2 in
t.rng <- keys.(0);
let action_rng = keys.(1) in
let action_tensor =
Rune.Rng.randint action_rng ~min:0 ~max:t.n_actions [| 1 |]
in
Rune.reshape [||] (Rune.cast Rune.int32 action_tensor))
else
let q_values = apply t.q_network t.q_params ~training:false obs_batched in
let q_flat = Rune.reshape [| t.n_actions |] q_values in
let q_array = Rune.to_array q_flat in
let best_action = ref 0 in
let best_q = ref q_array.(0) in
for i = 1 to Array.length q_array - 1 do
if q_array.(i) > !best_q then (
best_action := i;
best_q := q_array.(i))
done;
Rune.scalar Rune.int32 (Int32.of_int !best_action)
let add_transition t ~observation ~action ~reward ~next_observation ~terminated
~truncated =
Fehu.Buffer.Replay.add t.replay_buffer
Fehu.Buffer.
{ observation; action; reward; next_observation; terminated; truncated }
let update t =
if Fehu.Buffer.Replay.size t.replay_buffer < t.config.batch_size then
(0.0, 0.0)
else
let keys = Rune.Rng.split t.rng ~n:2 in
t.rng <- keys.(0);
let sample_rng = keys.(1) in
let batch =
Fehu.Buffer.Replay.sample t.replay_buffer ~rng:sample_rng
~batch_size:t.config.batch_size
in
let avg_q =
let total_q = ref 0.0 in
Array.iter
(fun (trans : _ Fehu.Buffer.transition) ->
let obs_shape = Rune.shape trans.observation in
let obs_batched =
if Array.length obs_shape = 1 then
let features = obs_shape.(0) in
Rune.reshape [| 1; features |] trans.observation
else trans.observation
in
let q_values =
apply t.q_network t.q_params ~training:false obs_batched
in
let action_idx = Int32.to_int (Rune.to_array trans.action).(0) in
let current_q = Rune.item [ 0; action_idx ] q_values in
total_q := !total_q +. current_q)
batch;
!total_q /. float_of_int (Array.length batch)
in
let loss_tensor, grads =
value_and_grad
(fun params ->
let total_loss = ref 0.0 in
Array.iter
(fun (trans : _ Fehu.Buffer.transition) ->
let obs_shape = Rune.shape trans.observation in
let obs_batched =
if Array.length obs_shape = 1 then
let features = obs_shape.(0) in
Rune.reshape [| 1; features |] trans.observation
else trans.observation
in
let q_values =
apply t.q_network params ~training:true obs_batched
in
let action_idx = Int32.to_int (Rune.to_array trans.action).(0) in
let current_q = Rune.item [ 0; action_idx ] q_values in
let target_q =
if trans.terminated then trans.reward
else
let next_obs_shape = Rune.shape trans.next_observation in
let next_obs_batched =
if Array.length next_obs_shape = 1 then
let features = next_obs_shape.(0) in
Rune.reshape [| 1; features |] trans.next_observation
else trans.next_observation
in
let next_q_values =
apply t.target_network t.target_params ~training:false
next_obs_batched
in
let next_q_flat =
Rune.reshape [| t.n_actions |] next_q_values
in
let next_q_array = Rune.to_array next_q_flat in
let max_next_q = ref next_q_array.(0) in
for i = 1 to Array.length next_q_array - 1 do
if next_q_array.(i) > !max_next_q then
max_next_q := next_q_array.(i)
done;
trans.reward +. (t.config.gamma *. !max_next_q)
in
let diff = current_q -. target_q in
total_loss := !total_loss +. (diff *. diff))
batch;
let avg_loss = !total_loss /. float_of_int (Array.length batch) in
Rune.create Rune.float32 [||] [| avg_loss |])
t.q_params
in
let loss_float = (Rune.to_array loss_tensor).(0) in
let updates, new_opt_state =
t.optimizer.update t.opt_state t.q_params grads
in
t.q_params <- Optimizer.apply_updates t.q_params updates;
t.opt_state <- new_opt_state;
(loss_float, avg_q)
let update_target_network t = t.target_params <- Ptree.copy t.q_params
let learn t ~env ~total_timesteps
?(callback = fun ~episode:_ ~metrics:_ -> true)
?(warmup_steps = t.config.batch_size) () =
let open Fehu in
let timesteps = ref 0 in
let episode = ref 0 in
(if warmup_steps > 0 then
let obs, _info = Env.reset env () in
let current_obs = ref obs in
let warmup_done = ref false in
while !timesteps < warmup_steps && not !warmup_done do
let action = predict t !current_obs ~epsilon:1.0 in
let transition = Env.step env action in
add_transition t ~observation:!current_obs ~action
~reward:transition.Env.reward
~next_observation:transition.Env.observation
~terminated:transition.Env.terminated
~truncated:transition.Env.truncated;
current_obs := transition.Env.observation;
timesteps := !timesteps + 1;
if transition.Env.terminated || transition.Env.truncated then
let obs, _info = Env.reset env () in
current_obs := obs
done);
while !timesteps < total_timesteps do
episode := !episode + 1;
let obs, _info = Env.reset env () in
let current_obs = ref obs in
let done_flag = ref false in
let episode_reward = ref 0.0 in
let episode_length = ref 0 in
let epsilon =
t.config.epsilon_end
+. (t.config.epsilon_start -. t.config.epsilon_end)
*. exp (-.float_of_int !timesteps /. t.config.epsilon_decay)
in
let total_loss = ref 0.0 in
let total_q = ref 0.0 in
let update_count = ref 0 in
while not !done_flag do
let action = predict t !current_obs ~epsilon in
let transition = Env.step env action in
add_transition t ~observation:!current_obs ~action
~reward:transition.Env.reward
~next_observation:transition.Env.observation
~terminated:transition.Env.terminated
~truncated:transition.Env.truncated;
episode_reward := !episode_reward +. transition.Env.reward;
episode_length := !episode_length + 1;
timesteps := !timesteps + 1;
let loss, avg_q = update t in
if loss > 0.0 then (
total_loss := !total_loss +. loss;
total_q := !total_q +. avg_q;
update_count := !update_count + 1);
current_obs := transition.Env.observation;
done_flag := transition.Env.terminated || transition.Env.truncated
done;
if !episode mod t.config.target_update_freq = 0 then update_target_network t;
let avg_loss =
if !update_count > 0 then !total_loss /. float_of_int !update_count
else 0.0
in
let avg_q_value =
if !update_count > 0 then !total_q /. float_of_int !update_count else 0.0
in
let metrics =
{
episode_return = !episode_reward;
episode_length = !episode_length;
epsilon;
avg_q_value;
loss = avg_loss;
}
in
let continue = callback ~episode:!episode ~metrics in
if not continue then timesteps := total_timesteps
done;
t
let save _t _path =
failwith "Dqn.save: not yet implemented"
let load _path =
failwith "Dqn.load: not yet implemented"