Source file TacCongruence.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
open Lang
open Qed.Logic
type pattern =
| IMUL_K of Integer.t * F.term
| IDIV_K of F.term * Integer.t
| QDIV of F.term * F.term
| Ival of F.term * Integer.t option
| Rval of F.term
let pattern e =
match F.repr e with
| Kint n -> Ival(e,Some n)
| Times(k,e) when F.is_int e -> IMUL_K(k,e)
| Div(a,b) when not (F.is_int e) -> QDIV(a,b)
| Div(a,b) when F.is_int e ->
begin match F.repr b with
| Kint k ->
if Integer.(equal k zero) then raise Not_found ;
IDIV_K(a,k)
| _ -> Ival(e,None)
end
| _ ->
if F.is_int e then Ival(e,None) else
if F.is_real e then Rval e else
raise Not_found
let to_term = function
| IMUL_K(k,a) -> F.e_times k a
| IDIV_K(a,k) -> F.e_div a (F.e_zint k)
| QDIV(a,b) -> F.e_div a b
| Ival(e,_) | Rval e -> e
let pdiv a b = let k = Integer.c_div a b in Ival(F.e_zint k,Some k)
let nzero x = F.p_neq F.e_zero x
let positive x = F.p_lt F.e_zero x
let negative x = F.p_lt x F.e_zero
type cmp = LEQ | LT | EQ
let icmp cmp a b = match cmp with
| LEQ -> Integer.le a b
| LT -> Integer.lt a b
| EQ -> Integer.equal a b
let fcmp cmp a b = match cmp with
| LEQ -> F.p_leq a b
| LT -> F.p_lt a b
| EQ -> F.p_equal a b
let compare_ratio cmp a u b v =
let x = F.e_mul a v in
let y = F.e_mul b v in
let pu = positive u in
let nu = negative u in
let pv = positive v in
let nv = negative v in
F.p_conj [ nzero u ; nzero v ;
F.p_hyps [pu;pv] (fcmp cmp x y) ;
F.p_hyps [nu;pv] (fcmp cmp y x) ;
F.p_hyps [pu;nv] (fcmp cmp y x) ;
F.p_hyps [nu;nv] (fcmp cmp x y) ]
let compare_div cmp a b g =
let ra = F.e_mod a g in
let rb = F.e_mod b g in
fcmp cmp (F.e_sub a ra) (F.e_sub b rb)
let rec compare cmp a b =
match a, b with
| IMUL_K( k,a ) , Ival(_,Some n) ->
if Integer.(lt zero k) then compare cmp (pattern a) (pdiv n k) else
if Integer.(lt k zero) then compare cmp (pdiv n k) (pattern a) else
if icmp cmp Integer.zero n then F.p_true else F.p_false
| Ival(_,Some n) , IMUL_K( k,a ) ->
if Integer.(lt zero k) then compare cmp (pdiv n k) (pattern a) else
if Integer.(lt k zero) then compare cmp (pattern a) (pdiv n k) else
if icmp cmp Integer.zero n then F.p_true else F.p_false
| IDIV_K( a,k ) , Ival(b,_) ->
if Integer.(lt zero k) then
let c = F.e_times k (F.e_add b F.e_one) in
fcmp cmp a c
else
if Integer.(lt k zero) then
let c = F.e_times k (F.e_sub b F.e_one) in
fcmp cmp c a
else
raise Not_found
| Ival(a,_) , IDIV_K( b,k ) ->
if Integer.(lt zero k) then
let c = F.e_times k (F.e_sub a F.e_one) in
fcmp cmp c b
else
if Integer.(lt k zero) then
let c = F.e_times k (F.e_add a F.e_one) in
fcmp cmp b c
else
raise Not_found
| IDIV_K( a,p ) , IDIV_K( b,q ) when
not Integer.(equal p zero) &&
not Integer.(equal q zero) ->
let g = Integer.pgcd (Integer.abs p) (Integer.abs q) in
let ka = Integer.e_div p g in
let kb = Integer.e_div q g in
compare_div cmp (F.e_times ka a) (F.e_times kb b) (F.e_zint g)
| QDIV(a,u) , QDIV(b,v) -> compare_ratio cmp a u b v
| QDIV(a,u) , (Ival(b,_) | Rval b) -> compare_ratio cmp a u b F.e_one
| (Ival(a,_) | Rval a) , QDIV(b,v) -> compare_ratio cmp a F.e_one b v
| _ ->
raise Not_found
let eq_ratio eq a u b v =
F.p_conj [ nzero u ; nzero v ; eq (F.e_mul a v) (F.e_mul b u) ]
let rec equal eq a b =
match a , b with
| IMUL_K( k,a ) , Ival(_,Some n)
| Ival(_,Some n) , IMUL_K( k,a ) ->
let r = Integer.c_rem k n in
if Integer.equal r Integer.zero then
equal eq (pattern a) (pdiv n k)
else
eq F.e_one F.e_zero
| IMUL_K( k,a ) , IMUL_K( k',b ) ->
let r = Integer.pgcd k k' in
eq (F.e_times (Integer.c_div k r) a)
(F.e_times (Integer.c_div k' r) b)
| IDIV_K( a,p ) , IDIV_K( b,q ) when
not Integer.(equal p zero) &&
not Integer.(equal q zero) ->
let g = Integer.pgcd (Integer.abs p) (Integer.abs q) in
let ka = Integer.e_div p g in
let kb = Integer.e_div q g in
compare_div EQ (F.e_times ka a) (F.e_times kb b) (F.e_zint g)
| QDIV(a,u) , QDIV(b,v) -> eq_ratio eq a u b v
| QDIV(a,u) , (Ival(b,_) | Rval b) -> eq_ratio eq a u b F.e_one
| (Ival(a,_) | Rval a) , QDIV(b,v) -> eq_ratio eq a F.e_one b v
| _ -> eq (to_term a) (to_term b)
let select goal =
match F.repr (F.e_prop goal) with
| Leq(a,b) -> compare LEQ (pattern a) (pattern b)
| Lt(a,b) -> compare LT (pattern a) (pattern b)
| Eq(a,b) -> equal F.p_equal (pattern a) (pattern b)
| Neq(a,b) -> equal F.p_neq (pattern a) (pattern b)
| _ -> raise Not_found
class congruence =
object
inherit Tactical.make
~id:"Wp.congruence"
~title:"Congruence"
~descr:"Euclidian Comparisons"
~params:[]
method select _feedback = function
| Tactical.Clause(Tactical.Goal p) ->
let q = select p in
if q != p
then Tactical.Applicable(fun seq -> ["congruence" , (fst seq , q)])
else Tactical.Not_applicable
| _ -> Tactical.Not_applicable
end
let tactical = Tactical.export (new congruence)
let strategy = Strategy.make tactical ~arguments:[]
class autodiv =
object
method id = "wp:congruence"
method title = "Auto Congruence"
method descr = "Resolve Divisions and Multiplications"
method search push (seq : Conditions.sequent) =
try
let p = snd seq in
let q = select p in
if q != p then push (strategy Tactical.(Clause (Goal p)))
with Not_found -> ()
end
let () = Strategy.register (new autodiv)