1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
open Format
open Qed.Logic
open Qed.Engine
open Lang
open Lang.F
type pool = {
mutable vars : Vars.t ;
mutable mark : Tset.t ;
}
let pool () = { vars = Vars.empty ; mark = Tset.empty }
let alloc_domain p = p.vars
let rec walk p f e =
if not (Tset.mem e p.mark) &&
not (Vars.subset (F.vars e) p.vars)
then
begin
p.mark <- Tset.add e p.mark ;
match F.repr e with
| Fvar x -> p.vars <- Vars.add x p.vars ; f x
| _ -> F.lc_iter (walk p f) e
end
let alloc_e = walk
let alloc_p pool f p = walk pool f (F.e_prop p)
let alloc_xs pool f xs =
let ys = Vars.diff xs pool.vars in
if not (Vars.is_empty ys) then
begin
Vars.iter f ys ;
pool.vars <- Vars.union xs pool.vars ;
end
module E = Qed.Export.Make(Lang.F.QED)
module Env = E.Env
type scope = Qed.Engine.scope
type iformat = [ `Dec | `Hex | `Bin ]
type rformat = [ `Ratio | `Float | `Double ]
let sanitizer = Qed.Export.sanitize ~to_lowercase:false
class engine =
object(self)
inherit E.engine as super
inherit Lang.idprinting
method t_int = "Z"
method t_real = "R"
method t_bool = "bool"
method t_prop = "Prop"
method t_atomic _ = true
method pp_tvar fmt k =
if 0 <= k && k < 26 then
fprintf fmt "'%c" (char_of_int (int_of_char 'a' + k))
else
fprintf fmt "'%d" (k-26)
method pp_array fmt t = fprintf fmt "%a[]" self#pp_subtau t
method pp_farray fmt t k =
fprintf fmt "@[<hov 2>%a[%a]@]" self#pp_subtau t self#pp_tau k
method pp_datatype a fmt ts =
Qed.Plib.pp_call_var ~f:(self#datatype a) self#pp_tau fmt ts
method e_true _ = "true"
method e_false _ = "false"
val mutable iformat : iformat = `Dec
method get_iformat = iformat
method set_iformat (f : iformat) = iformat <- f
method pp_int _ fmt z =
try
let n = Integer.to_int_exn z in
if -256 <= n && n <= 256 then
Format.pp_print_int fmt n
else
raise Z.Overflow
with Z.Overflow ->
match iformat with
| `Dec -> Integer.pretty fmt z
| `Hex -> Integer.pp_hex ~sep:"," fmt z
| `Bin -> Integer.pp_bin ~sep:"," fmt z
val mutable rformat : rformat = `Ratio
method get_rformat = rformat
method set_rformat (f : rformat) = rformat <- f
method pp_real fmt q =
match Q.classify q with
| Q.ZERO -> Format.pp_print_string fmt ".0"
| Q.INF -> Format.pp_print_string fmt "(1/.0)"
| Q.MINF -> Format.pp_print_string fmt "(-1/.0)"
| Q.UNDEF -> Format.pp_print_string fmt "(.0/.0)"
| Q.NZERO ->
match rformat with
| `Ratio ->
let { Q.num = num ; Q.den = den } = q in
if Z.equal den Z.one then
Format.fprintf fmt "%s.0" (Z.to_string num)
else
Format.fprintf fmt "(%s.0/%s)"
(Z.to_string num)
(Z.to_string den)
| `Float ->
Format.fprintf fmt "%sf" (Cfloat.float_lit Ctypes.Float32 q)
| `Double ->
Format.fprintf fmt "%sd" (Cfloat.float_lit Ctypes.Float64 q)
method callstyle = CallVar
method is_atomic e =
match F.repr e with
| Kint z -> Z.leq Z.zero z
| Kreal _ -> true
| Apply _ -> true
| Aset _ | Aget _ | Fun _ -> true
| _ -> F.is_simple e
method op_spaced = Qed.Export.is_identifier
method op_scope _ = None
method op_real_of_int = Op "(R)"
method op_add _ = Assoc "+"
method op_sub _ = Assoc "-"
method op_mul _ = Assoc "*"
method op_div _ = Op "/"
method op_mod _ = Op "%"
method op_minus _ = Op "-"
method op_equal _ = Op "="
method op_noteq _ = Op "!="
method op_eq _ _ = Op "="
method op_neq _ _ = Op "!="
method op_lt _ _ = Op "<"
method op_leq _ _ = Op "<="
method op_not _ = Op "!"
method op_and = function Cprop -> Assoc "/\\" | Cterm -> Assoc "&"
method op_or = function Cprop -> Assoc "\\/" | Cterm -> Assoc "|"
method op_equiv = function Cprop -> Op "<->" | Cterm -> Op "="
method op_imply _ = Op "->"
method pp_conditional fmt cond pthen pelse =
begin
fprintf fmt "@[<hov 0>if %a" self#pp_atom cond ;
fprintf fmt "@ then %a" self#pp_atom pthen ;
fprintf fmt "@ else %a" self#pp_atom pelse ;
fprintf fmt "@]" ;
end
method pp_array_cst fmt (_ : F.tau) v =
Format.fprintf fmt "@[<hov 2>[%a..]@]" self#pp_flow v
method pp_array_get fmt a k =
Format.fprintf fmt "@[<hov 2>%a@,[%a]@]" self#pp_atom a self#pp_flow k
method pp_array_set fmt a k v =
Format.fprintf fmt "@[<hov 2>%a@,[%a@ <- %a]@]"
self#pp_atom a self#pp_atom k self#pp_flow v
method pp_get_field fmt a fd =
Format.fprintf fmt "%a.%s" self#pp_atom a (self#field fd)
method pp_def_fields fmt fvs =
let base,fvs = match F.record_with fvs with
| None -> None,fvs | Some(r,fvs) -> Some r,fvs in
begin
fprintf fmt "@[<hov 2>{" ;
let open Qed.Plib in
iteri
(fun i (f,v) ->
( match i , base with
| (Isingle | Ifirst) , Some r ->
fprintf fmt "@ %a with" self#pp_flow r
| _ -> () ) ;
( match i with
| Ifirst | Imiddle ->
fprintf fmt "@ @[<hov 2>%s = %a ;@]"
(self#field f) self#pp_flow v
| Isingle | Ilast ->
fprintf fmt "@ @[<hov 2>%s = %a@]"
(self#field f) self#pp_flow v )
) fvs ;
fprintf fmt "@ }@]" ;
end
method! pp_fun cmode fct ts =
if fct == Vlist.f_concat then Vlist.pretty self ts else
if fct == Vlist.f_elt then Vlist.elements self ts else
if fct == Vlist.f_repeat then Vlist.pprepeat self ts else
super#pp_fun cmode fct ts
method pp_apply (_:cmode) e fmt es =
fprintf fmt "@[<hov 2>%a" self#pp_atom e ;
List.iter (fprintf fmt "@ @@@@ %a" self#pp_atom) es ;
fprintf fmt "@]"
method pp_lambda fmt vs =
fprintf fmt "@[<hov 2>fun" ;
List.iter
(fun (x,t) ->
fprintf fmt "@ @[<hov 2>(%a: %a)@]" self#pp_var x self#pp_tau t
) vs ;
fprintf fmt "@ ->@]"
method! shareable e = super#shareable e && Vlist.shareable e
method pp_forall tau fmt = function
| [] -> ()
| x::xs ->
fprintf fmt "@[<hov 2>forall %a" self#pp_var x ;
List.iter (fun x -> fprintf fmt ",@,%a" self#pp_var x) xs ;
fprintf fmt "@ : %a.@]" self#pp_tau tau ;
method pp_exists tau fmt = function
| [] -> ()
| x::xs ->
fprintf fmt "@[<hov 2>exists %a" self#pp_var x ;
List.iter (fun x -> fprintf fmt ",@,%a" self#pp_var x) xs ;
fprintf fmt "@ : %a.@]" self#pp_tau tau ;
method pp_let fmt _ x e =
fprintf fmt "@[<hov 4>let %s = %a in@]@ " x self#pp_flow e
method pp_pred fmt p = self#pp_prop fmt (F.e_prop p)
end