Source file heap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
(******************************************************************************
*                                                                             *
*                             Fungi Heap                                      *
*                      Functional Fibonacci Heap                              *
*                         harryk@harryk.dev                                   *
*                                                                             *
*******************************************************************************)

(**

   {1:fibheap Fibonacci Heap Implementation }

    Simplest Indexed Fibonacci (d-ary) heap                                    
      - Every node's key is less(default cmp) than or equal to its children     
        keys as given by the Entry.compare function                            
      - The minimum|maximum element is always in the root list depending       
        on your compare function                                               
      - Unlike binary heaps, there's no enforced structure                     
      - Duplicates are tolerated as they can be introduced by decrease and     
        increase operations                                                    
      - A node can have any number of children                                 
      - Children can be added or removed freely                                
      - no redundancy (if 2 nodes are the same their trees are assumed to      
        be the same)                                                           
      - For simplicity we don't have a min pointer at the root list but it may 
        be added in the future, we so have to walk the root list to get the    
        min                                                                    

*)
 
module type Ordinal = sig 
    (* The full type *)
    type t
    (* How we order in the heap *)
    type order
    (* How we get the order from a node *)
    val  bind:     t  -> order
    (* How we compare different elements *)
    (* total order *)
    val  compare:  t  -> t -> int
    (* How we compare different orders *)
    val  order: order -> order -> int
end

(* immediately binds a value as its own order *)
module Surject(Inner: Set.OrderedType): Ordinal with type t = Inner.t and type order = Inner.t = struct 
    type t          = Inner.t
    type order      = Inner.t
    let  bind    e  = e
    let  order      = Inner.compare
    let  compare    = Inner.compare
end

module type FibHeap = sig
    type node
    type order
    type elts        = { data: node; mutable churn: int; index: int; succ: elts list }
    type t           = elts list
    val empty:       t
    val is_empty:    t -> bool
    val equal:       node -> node -> bool
    val minify:      node -> node -> bool
    val maxify:      node -> node -> bool
    val oequal:      node -> node -> int
    val degree:      elts -> int
    val cardinal:    t -> int
    val collapse:    t -> node list
    val churn_threshold: int ref
    val instance:    node -> int -> elts
    val singleton:   node -> t
    val dedup:       node -> elts list -> (elts list * node list)
    val dedup_idx:   node -> elts list -> elts list * (node * int) list
    val dupcount:    node -> t -> int
    val extract_til: ?cmp:(node -> node -> bool) -> (node -> bool) -> t -> node list
    val to_seq:      ?cmp:(node -> node -> bool) -> t -> node Seq.t
    val of_seq:      ?cmp:(node -> node -> bool) -> node Seq.t -> elts list
    val of_list:     ?cmp:(node -> node -> bool) -> node list -> t
    val consolidate: ?cmp:(node -> node -> bool) -> t -> t
    val mem:         ?cmp:(node -> node -> bool) -> node -> t -> bool
    val insert:      ?cmp:(node -> node -> bool) -> node -> t -> t
    val dupinsert:   ?cmp:(node -> node -> bool) -> node -> t -> t
    val peek:        ?cmp:(node -> node -> bool) -> t -> elts
    val peek_opt:    ?cmp:(node -> node -> bool) -> t -> elts option
    val merge:       ?cmp:(node -> node -> bool) -> elts -> elts -> elts
    val extract:     ?cmp:(node -> node -> bool) -> t -> (node * t)
    val extract_opt: ?cmp:(node -> node -> bool) -> t -> (node * t) option
    val extract_all: ?cmp:(node -> node -> bool) -> t -> node list
    val update:      ?cmp:(node -> node -> bool) -> node -> elts -> elts list -> elts -> elts list -> elts list * elts list * bool
    val increase:    ?cmp:(node -> node -> bool) -> node -> node -> t -> t
    val decrease:    ?cmp:(node -> node -> bool) -> node -> node -> t -> t
    val find:        (node -> bool) -> elts list -> node
    val find_opt:    (node -> bool) -> elts list -> node option
end

(** 
    {2:create Create a Fibonacci Heap}

    {@ocaml[ 
        module F  = Heap.MakeFibHeap (struct
            (* the main type *)
            type t         = int
            (* how to determine order *)
            type order     = int
            let  bind    e = e
            (* compare to orders *)
            let  order     = Int.compare
            (* compare to nodes *)
            let  compare   = Int.compare
        end);; 
    ]}


*)
module MakeFibHeap(Entry: Ordinal): FibHeap with type node = Entry.t and type order = Entry.order = struct

    type node  = Entry.t
    ;;

    type order = Entry.order 
    ;;

    (* churn tracks the grand-children that have been removed *)
    type elts = { data: node; mutable churn: int; index: int; succ: elts list }
    ;;

    type t    = elts list
    ;;

    let empty = []
    ;;

    let is_empty = function
        | []     -> true 
        | _ :: _ -> false
    ;;

    (* internal joining tbl which stores int (degree) -> elts *)
    let tbl = Hashtbl.create 0
    ;;

    let equal  l r = (Entry.compare l r) =  0
    ;;

    (* comparator that determines if the root is the smallest or the largest *)
    let oequal l r = (Entry.order (Entry.bind l) (Entry.bind r))
    ;;

    (* max-heapify, root elts are the most of their successors *)
    let maxify l r = oequal l r =  1
    ;;

    (* min-heapify, root elts are the least of their successors *)
    let minify l r = oequal l r = -1
    ;;

    (* churn threshold *)
    let churn_threshold = ref 8
    ;;

    let instance pleaf idx = { data=pleaf; churn=0; index=idx; succ=[] }
    ;;

    let mem ?(cmp=minify) pleaf ptree = 
        let rec fmem tree rem = match tree with
        | [] -> (match rem with
                | [] -> false
                | branch :: left  ->  
                    (match branch with
                        | [] ->
                            (match left with 
                                | [] -> false
                                | l :: r ->  fmem l r)
                        | hd :: rest ->
                            (* reduce the number of `List.concat` operations by
                               'batching' lists - this works really good for dense heaps
                            *)
                            (equal hd.data pleaf) 
                                || 
                            (if cmp hd.data pleaf then 
                                fmem hd.succ (rest :: left) 
                            else 
                                fmem rest (hd.succ :: left))
                    )
                )
        | hd :: tail ->
            (equal hd.data pleaf) 
                ||
            (if cmp hd.data pleaf then 
                fmem hd.succ (tail :: rem) 
            else 
                fmem tail (hd.succ :: rem))
        in fmem ptree []
    ;;

    let rec cardinal = function 
        | [] -> 0
        | hd :: tail ->
            (cardinal hd.succ) + 1 + (cardinal tail)
    ;;

    (* linear time find *)
    let find f = function 
        | [] -> raise Not_found
        | hd :: tail ->
            if f hd.data then 
                hd.data 
            else
                let rec mergefind tree rem = match tree with 
                    | [] -> 
                        (match rem with
                            | [] -> raise Not_found
                            | hd :: rest -> 
                                if f hd.data then 
                                    hd.data
                                else
                                    (mergefind rest hd.succ)
                        )
                    | hd :: tail ->
                        if f hd.data then 
                            hd.data 
                        else
                            (mergefind tail (hd.succ @ rem))
                in mergefind hd.succ tail
    ;;

    (* linear time find *)
    let find_opt f = function 
        | [] -> None
        | hd :: tail ->
            if f hd.data then 
                Some hd.data 
            else
                let rec mergefind tree rem = match tree with 
                    | [] -> 
                        (match rem with
                            | [] -> None
                            | hd :: rest -> 
                                if f hd.data then 
                                    Some hd.data
                                else
                                    (mergefind rest hd.succ)
                        )
                    | hd :: tail ->
                        if f hd.data then 
                            Some hd.data 
                        else
                            (mergefind tail (hd.succ @ rem))
                in mergefind hd.succ tail
    ;;

    (* count all duplicate occurences of pleaf *)
    let dupcount pleaf tree = 
        let rec fdup stree acc = match stree with 
            | [] -> acc 
            | hd :: tl ->
                if equal hd.data pleaf then 
                    fdup tl @@ fdup hd.succ (acc + 1)
                else
                    (fdup[@tailcall]) tl acc
        in fdup tree 0
    ;;

    (* insert with partial tolerance for duplicates, insertion order may not hold
       when extracting. Especially if you insert AFTER an extract_min operation
       however it should be fine if inserts happen at once before extracts 
       or in the case that updates are consistent with older inserted heap
       entries and not creating Heap violations e.g. hill | basin inconsistency 

       TODO: Make list head the min pointer (along with consolidate) ??
    *)
    let insert ?(cmp=minify) pleaf tree = 
        let rec pinsert pleaf dupc = function
            | [] -> [ (instance pleaf dupc) ]
            | (hd :: tail) ->
                if equal hd.data pleaf then
                   let dupc' = dupc + 1 in  
                   { hd with succ= (pinsert pleaf (dupc') hd.succ) } :: tail
                else if cmp hd.data pleaf then
                    { hd with succ=(pinsert pleaf dupc hd.succ) } :: tail
                else
                    hd :: (pinsert pleaf dupc tail)
        in pinsert pleaf 0 tree
    ;;

    (* insert with high tolerance for duplicates and try to preserve the insertion order
       as much as possible - requires counting all duplicates ahead *)
    let dupinsert ?(cmp=minify) pleaf tree = 
        (* TODO: By using a mutable ref, we can perhaps reference the duplicate
           value and emplace it in new duplicate instances *)
        let dc = (dupcount pleaf tree) + 1 in
        let rec dupinsert pleaf dupc = function
            | [] -> [ (instance pleaf dupc) ]
            | (hd :: tail) ->
                if equal hd.data pleaf then
                    (* we could have duplicates with different priorities!
                       so watch out for hill or basin inconsistency *)
                    if cmp hd.data pleaf then
                        { hd with succ=(dupinsert pleaf (dupc) hd.succ) } :: tail
                    else
                        (* pleaf is fresh so we bubble down hd.data with its index *)
                        {   data=pleaf; churn=0; index=dupc; 
                            succ=(dupinsert hd.data (hd.index)  hd.succ)
                        } :: (tail)
                else if cmp hd.data pleaf then
                    { hd with succ=(dupinsert pleaf dupc hd.succ) } :: tail
                else
                    hd :: (dupinsert pleaf dupc tail)
        in dupinsert pleaf dc tree
    ;;

    let singleton pleaf = 
        [ { data=pleaf; churn=0; index=0; succ=[] } ]
    ;;

    (* insert like merge into an existing tree *)
    let rec merge_node ?(cmp=minify) pleaf = function
        | [] -> [ pleaf ]
        | (hd :: tail) as s ->
            if equal hd.data pleaf.data then
                if hd.index < pleaf.index then
                    { hd with succ=pleaf :: (hd.succ @ pleaf.succ) } :: s
                else
                    { pleaf with succ=hd :: (hd.succ @ pleaf.succ) } :: s
            else if cmp hd.data pleaf.data then
                { hd with succ=(merge_node pleaf ~cmp:cmp hd.succ) } :: tail
            else
                hd :: (merge_node pleaf ~cmp:cmp tail)
    ;;

    (* remove all duplicate occurences of pleaf *)
    let dedup pleaf tree = 
        let rec fdup stree ntree acc = match stree with 
            | [] -> (ntree, acc) 
            | hd :: tl ->
                if equal hd.data pleaf then 
                    let (ntree', acc') = fdup hd.succ ntree (hd.data :: acc) in 
                    fdup tl ntree' acc'
                else
                    fdup tl (hd :: ntree) acc
        in fdup tree [] []
    ;;

    (* remove all duplicate occurences of pleaf in reverse insertion order *)
    let dedup_idx pleaf tree = 
        let rec fdup stree ntree acc = match stree with 
            | [] -> (ntree, acc) 
            | hd :: tl ->
                if equal hd.data pleaf then 
                    let (ntree', acc') = fdup hd.succ ntree ((hd.data, hd.index) :: acc) in 
                    fdup tl ntree' acc'
                else
                    fdup tl (hd :: ntree) acc
        in fdup tree [] []
    ;;

    (* merge two tree elements *)
    let merge ?(cmp=minify) tree trunk = 
        (* duplicate allowed to exit in successor *)
        if equal tree.data trunk.data then
            (* try and preserve the insertion order *)
            if tree.index > trunk.index then
                { trunk with succ = tree  :: trunk.succ }
            else
                { tree with  succ = trunk :: tree.succ }
        (* bubbling elements to maintain heap properties  *)
        else if cmp tree.data trunk.data then
            (* bubble down the tree *)
            { tree  with succ=(merge_node ~cmp:cmp trunk tree.succ) }
        else
            (* bubble up the trunk *)
            { trunk with succ=(merge_node ~cmp:cmp tree trunk.succ) }
    ;;

    exception Empty

    let degree tree = List.length tree.succ
    ;;

    (** inorder traverse the heap, elements will likely be out of order 
        NB: In the rem, we use list of list rather than flat plain list to
        speed up the process
    *)
    let collapse = function 
        | [] -> [] 
        | { succ=child; data=pleaf;_ } :: tail ->
            let rec fcollapse tree rem acc = 
                match tree with
                | [] -> 
                    (* reduce the number of `List.concat` operations by
                       'batching' lists - this works really good for dense heaps
                    *)
                    (match rem with 
                        | [] -> acc
                        | branch :: left -> 
                            (match branch with
                                | [] -> 
                                    (match left with 
                                        | [] -> acc
                                        | l :: r ->  fcollapse l r acc)
                                | { succ=child''; data=pleaf'';_ } :: tl'' -> 
                                    fcollapse child'' ([  tl'' ] @ left) (pleaf'' :: acc)
                            )
                    )
                | { succ=child'; data=pleaf';_ } :: tl' ->
                    fcollapse child' (tl' :: rem) (pleaf' :: acc)
            in fcollapse child ([ tail ]) ([ pleaf ])
    ;;

    (* straddles the root elts for the min *)
    let rec peek ?(cmp=minify) = function 
        | [] -> raise Empty 
        | hd :: tail ->
            match tail with 
            | [] -> hd 
            | fllw :: rest -> 
                if cmp hd.data fllw.data then
                    peek ~cmp:cmp (hd   :: rest)
                else
                    peek ~cmp:cmp (fllw :: rest)
    ;;

    let rec peek_opt ?(cmp=minify) = function 
        | [] -> None
        | hd :: tail ->
            match tail with 
            | [] -> Some hd 
            | fllw :: rest -> 
                if cmp hd.data fllw.data then
                    peek_opt ~cmp:cmp (hd   :: rest)
                else
                    peek_opt ~cmp:cmp (fllw :: rest)
    ;;

    (* joins subtrees of equal degrees 
       The ntree is added back into the hashtable to be
       rejoined with the one there if it existed.
       this creates the binomial tree situation 
    *)
    let consolidate ?(cmp=minify) trees  =
        (* push all nodes by degree *)
        let rec cascade rejoin =  
            let leftover = List.fold_left (fun acc eltree ->
                let deg = degree eltree in
                match Hashtbl.find_opt tbl deg with
                | Some tree ->
                    (* merge and rejoin *)
                    let ntree = merge ~cmp:cmp tree eltree  in
                    let _     = Hashtbl.remove tbl deg in
                    ntree :: acc
                | None ->
                    let _ = Hashtbl.add tbl deg eltree in
                    acc
            ) [] rejoin in match leftover with
                | [] -> () 
                | _ :: _ -> cascade leftover
        in
        let _   = cascade trees in
        let fin = List.of_seq @@ Hashtbl.to_seq_values tbl in
        let _   = Hashtbl.clear tbl in
        fin
    ;;

    (*
    TODO: Because we are traversing the root elements instead of memoizing the
    min|max, this is actuall o(len(root elts)) and not o1, fix it!
    *)

    let extract ?(cmp=minify) = function 
        | [] -> raise Empty
        | hd :: tail -> 
            (* straddle the root elts for the elt most true for cmp *)
            let rec split hd tl acc =
                match tl with 
                | [] -> (hd, acc) 
                | fllw :: rest -> 
                    if cmp hd.data fllw.data then
                        split hd   rest (fllw :: acc)
                    else
                        split fllw rest (hd   :: acc)
            in 
            (* consolidate all its successors to the root list *)
            let (it, rem) = split hd tail [] in 
            (it.data, consolidate ~cmp:cmp (rem @ it.succ))
    ;;

    let extract_opt ?(cmp=minify) = function 
        | [] -> None
        | head :: tail -> 
            (* straddle the root elts for the elt most true for cmp *)
            let rec split hd tl acc =
                match tl with 
                | [] -> (hd, acc) 
                | fllw :: rest -> 
                    if cmp hd.data fllw.data then
                        split hd   rest (fllw :: acc)
                    else
                        split fllw rest (hd   :: acc)
            in 
            (* add all its successors to the root list 
               try and keep the number of root trees to a minimum 
               by joining same degreee nodes (consolidate) *)
            let  (it, rem) = split head tail [] in 
            Some (it.data, consolidate ~cmp:cmp (rem @ it.succ))
    ;;

    (* extract_all should yield a sorted list *)
    let rec extract_all ?(cmp=minify) tree = 
        let sml, rem =  extract ~cmp:cmp tree in 
        match rem with
        | []   -> [ sml ]
        | rest ->   sml :: extract_all ~cmp:cmp rest
    ;;

    let of_list ?(cmp=minify) els = 
        List.fold_right (insert ~cmp:cmp) els empty
    ;;

    let to_seq ?(cmp=minify) tree = 
        let rec aux l () = match extract_opt ~cmp:cmp l with
            | None -> Seq.Nil
            | Some (hd, tail) -> Seq.Cons (hd, (aux tail))
        in
        (aux tree)
    ;;

    let rec of_seq ?(cmp=minify) tseq = 
        match tseq () with
        | Seq.Nil -> []
        | Seq.Cons (x1, seq) ->
            begin match seq () with
                | Seq.Nil -> [(instance x1 0)]
                | Seq.Cons (x2, seq) -> 
                    insert ~cmp:cmp (x1) @@ insert ~cmp:cmp (x2) @@ of_seq ~cmp:cmp seq
                end
    ;;

    (* extract until a condition is true should yield a sorted list *)
    let extract_til ?(cmp=minify) f tree = 
        let sml , rem =  extract ~cmp:cmp tree in 
        if f sml then 
            [ sml ]
        else
            match rem with
            | []   -> [ sml ]
            | rest ->   sml :: extract_all ~cmp:cmp rest
    ;;

    (* basically search until we find the old-entry and replace with a new one 
       we have to confirm with the parent whether the main property holds and
       change otherwise by "cutting it out" to the root

       As this can slow extract by making us end up with trees of large degree
       but few successors we mark parents to have them also be cut off once a
       threshold of succesors have been "updated" by decrease or incr to sort-of 
       balance out the nodes

       This operation may end up introducing duplicates from the new entry as a
       replacement - which creates a new challenge 

       In the presence of duplicates, we decrease|increase only the first item to be
       found (local only approach) if you want to update all, you would need to
       either call it multiple times until it raises empty, but likely you need
       to choose a better structure and comparator for your Entry.t to better
       disambiguatae entries

       decrease-key does NOT trigger consolidation of the root list. 
       This is actually crucial for maintaining the O(1) amortized time complexity of decrease-key.

    *)

    let update ?(cmp=minify) newent hd tl parent leftover = 
        let maxbelopt = (peek_opt ~cmp:cmp hd.succ) in
        match maxbelopt with
        | Some maxbel ->
            let par, son = (cmp parent.data newent), (cmp maxbel.data newent) in
            if par && not son then
                (* true, false -> ok and consistent *)
                ({ hd with data=newent }  :: tl, leftover, true)
            else
                (* true, true  -> hill inconsistency *)
                let _ = (parent.churn <- parent.churn + 1) in
                (tl, { data=newent; churn=0; succ=[]; index=hd.index; } :: hd.succ, true)
        | None -> 
            let par = (cmp parent.data newent) in
            if par then
                (* true, false  -> ok *)
                ({ hd with data=newent } :: tl, leftover, true)
            else
                (* true, true   -> hill  *)
                let _ = (parent.churn <- parent.churn + 1) in
                (tl, { data=newent; churn=0; succ=[]; index=hd.index } :: hd.succ, true)
    ;;

    (* local only increase, duplicates not updated 
    *)
    let increase ?(cmp=minify) old bgger tree = 
        match tree with
        | [] -> raise Empty
        | _ :: _ ->
            let rec atparent parent tree leftover found = match tree with
                | [] ->
                    tree, leftover, found
                | (hd :: tl) -> 
                    if (equal hd.data old) then 
                        if (oequal hd.data bgger) =  1 then
                            failwith "new value must be larger"
                        else
                            update ~cmp:cmp bgger hd tl parent leftover
                    else
                        let nt, lf, wasfound = atparent hd hd.succ leftover found in
                        if wasfound then
                            if hd.churn > (!churn_threshold) then
                                (* many children have died, we die as well :-( *)
                                let _ = (parent.churn <- (parent.churn + 1)) in
                                (tl, { hd with succ=nt } :: lf, wasfound)
                            else
                                ({ hd with succ=nt } :: tl, lf, wasfound)
                        else
                            (* the node may have moved to the root, straddle
                               the tail *)
                            let nt, lf, rem = atparent parent tl leftover found in
                            (hd :: nt, lf, rem)
            in 
            let self = { data=bgger; churn=0; succ=[]; index=0; } in
            let ntree, left, found = atparent self tree [] false in 
            if found then
                (* reset root churn values *)
                let _ = (List.iter (fun n -> n.churn <- 0) left) in
                ntree @ left
            else
                failwith "value not in heap"
    ;;

    (* local only priority decrease, duplicates not updated 
        this operation is uninformed of the former nodes priority and thus searches
        the whole list 
    *)
    let decrease ?(cmp=minify) old smller tree = 
        match tree with
        | [] -> raise Empty
        | _ :: _ ->
            let rec atparent parent tree leftover found = match tree with
                | [] ->
                    (tree, leftover, found)
                | (hd :: tl) -> 
                    (* found the element *)
                    if (equal hd.data old) then 
                        (*if (Entry.ocompare (Entry.bind hd.data) (newent)) = -1 then*)
                        if (oequal hd.data smller) = -1 then
                            failwith "new value must be smaller"
                        else
                            update ~cmp:cmp smller hd tl parent leftover
                    else
                        let nt, lf, wasfound = (atparent hd hd.succ leftover found) in
                        (* backtrack, check if we hit a churn threshold *)
                        if wasfound then
                            if hd.churn > (!churn_threshold) then
                                (* many children have died, we die as well :-( *)
                                let _ = (parent.churn <- (parent.churn + 1)) in
                                (tl, { hd with succ=nt } :: lf, wasfound)
                            else
                                ({ hd with succ=nt } :: tl, lf, wasfound)
                        else
                            (* the node may have moved to the root, straddle
                               the tail *)
                            let nt, lf, rem = atparent parent tl leftover found in
                            (hd :: nt, lf, rem)
            in 
            (* start with self as its own parent *)
            let self = { data=smller; churn=0; succ=[]; index=0; } in
            let ntree, left, wasfound = atparent self tree [] false in 
            if wasfound then
                (* reset churn values *)
                let _ = (List.iter (fun n -> n.churn <- 0) left) in
                ntree @ left
            else
                failwith "value not in heap"
    ;;

end