1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
type scm = Raw.scm
let init_with f =
ignore @@ Raw.scm_with_guile (fun v -> f (); v) Ctypes.null
let with_continuation_barrier f =
ignore @@ Raw.scm_with_continuation_barrier (fun v -> f (); v) Ctypes.null
let init () =
Raw.scm_init_guile ()
let shell () =
Raw.scm_shell Sys.argv
let load filename = Raw.scm_primitive_load filename
let eol: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scm_eol)
let undefined: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scm_undefined)
let (=) l r = Raw.scm_is_eq l r
module Bool = struct
let t: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scml_bool_t)
let f: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scml_bool_f)
let boolean_p v = Raw.scm_boolean_p v
let is_bool v = Raw.scm_is_bool v
let not v = Raw.scm_not v
let to_raw v = Raw.scm_from_bool v
let from_raw v = Raw.scm_to_bool v
end
module Number = struct
let number_p v = Raw.scm_number_p v
let is_number v = Raw.scm_is_number v
let integer_p v = Raw.scm_integer_p v
let is_integer v = Raw.scm_is_integer v
let exact_integer_p v = Raw.scm_exact_integer_p v
let is_exact_integer v = Raw.scm_is_exact_integer v
let char_from_raw v = Raw.scm_to_char v
let schar_from_raw v = Raw.scm_to_schar v
let uchar_from_raw v = Raw.scm_to_uchar v
let short_from_raw v = Raw.scm_to_short v
let ushort_from_raw v = Raw.scm_to_ushort v
let int_from_raw v = Raw.scm_to_int v
let uint_from_raw v = Raw.scm_to_uint v
let long_from_raw v = Raw.scm_to_long v
let ulong_from_raw v = Raw.scm_to_ulong v
let long_long_from_raw v = Raw.scm_to_long_long v
let ulong_long_from_raw v = Raw.scm_to_ulong_long v
let size_t_from_raw v = Raw.scm_to_size_t v
let char_to_raw v = Raw.scm_from_char v
let schar_to_raw v = Raw.scm_from_schar v
let uchar_to_raw v = Raw.scm_from_uchar v
let short_to_raw v = Raw.scm_from_short v
let ushort_to_raw v = Raw.scm_from_ushort v
let int_to_raw v = Raw.scm_from_int v
let uint_to_raw v = Raw.scm_from_uint v
let long_to_raw v = Raw.scm_from_long v
let ulong_to_raw v = Raw.scm_from_ulong v
let long_long_to_raw v = Raw.scm_from_long_long v
let ulong_long_to_raw v = Raw.scm_from_ulong_long v
let size_t_to_raw v = Raw.scm_from_size_t v
module Float = struct
let real_p v = Raw.scm_real_p v
let is_real v = Raw.scm_is_real v
let rationalp v = Raw.scm_rational_p v
let is_rational v = Raw.scm_is_rational v
let rationalize v = Raw.scm_rationalize v
let inf_p v = Raw.scm_inf_p v
let nan_p v = Raw.scm_nan_p v
let finite_p v = Raw.scm_finite_p v
let nan v = Raw.scm_nan v
let inf v = Raw.scm_inf v
let numerator v = Raw.scm_numerator v
let denominator v = Raw.scm_denominator v
let from_raw v = Raw.scm_to_double v
let to_raw v = Raw.scm_from_double v
end
module Complex = struct
let complex_p v = Raw.scm_complex_p v
let is_complex v = Raw.scm_is_complex v
end
let exact_p v = Raw.scm_exact_p v
let is_exact v = Raw.scm_is_exact v
let inexact_p v = Raw.scm_inexact_p v
let is_inexact v = Raw.scm_is_inexact v
let inexact_to_exact v = Raw.scm_inexact_to_exact v
let exact_to_inexact v = Raw.scm_exact_to_inexact v
end
module Pair = struct
let cons hd tl = Raw.scm_cons hd tl
let car pair = Raw.scm_car pair
let cdr pair = Raw.scm_cdr pair
let caar pair = Raw.scm_caar pair
let cadr pair = Raw.scm_cadr pair
let cdar pair = Raw.scm_cdar pair
let hd pair = car pair
let tl pair = cdr pair
let set_car pair vl = Raw.scm_setcar pair vl
let set_cdr pair vl = Raw.scm_setcdr pair vl
let is_cons x = Raw.scm_is_pair x
let is_ncons x = not (is_cons x)
end
module List = struct
let is_null = Raw.scm_is_null
let of_raw f scm =
let rec of_list acc f scm =
if is_null scm
then List.rev acc
else begin
if not @@ Pair.is_cons scm then
failwith "found non-list construction";
let hd = Pair.car scm in
let tl = Pair.cdr scm in
of_list (f hd :: acc) f tl
end in
of_list [] f scm
let rec to_raw f = function
| [] -> eol
| [x] -> Raw.scm_list_1 (f x)
| [x1;x2] -> Raw.scm_list_2 (f x1) (f x2)
| [x1;x2;x3] -> Raw.scm_list_3 (f x1) (f x2) (f x3)
| [x1;x2;x3;x4] -> Raw.scm_list_4 (f x1) (f x2) (f x3) (f x4)
| [x1;x2;x3;x4;x5] -> Raw.scm_list_5 (f x1) (f x2) (f x3) (f x4) (f x5)
| hd :: tl -> Raw.scm_cons (f hd) (to_raw f tl)
end
module Char = struct
let char_p v = Raw.scm_char_p v
let is_char v = char_p v |> Bool.from_raw
let alphabetic_p v = Raw.scm_char_alphabetic_p v
let is_alphabetic v = alphabetic_p v |> Bool.from_raw
let numeric_p v = Raw.scm_char_numeric_p v
let is_numeric v = numeric_p v |> Bool.from_raw
let whitespace_p v = Raw.scm_char_whitespace_p v
let is_whitespace v = whitespace_p v |> Bool.from_raw
let upper_case_p v = Raw.scm_char_upper_case_p v
let is_upper_case v = upper_case_p v |> Bool.from_raw
let lower_case_p v = Raw.scm_char_lower_case_p v
let is_lower_case v = lower_case_p v |> Bool.from_raw
let is_both_p v = Raw.scm_char_is_both_p v
let is_both v = is_both_p v |> Bool.from_raw
let general_category_p v = Raw.scm_char_general_category v
let is_general_category v = general_category_p v |> Bool.from_raw
let from_raw = Number.char_from_raw
let to_raw = Number.char_to_raw
end
module String = struct
let string_p v = Raw.scm_string_p v
let is_string v = Raw.scm_is_string v
let is_empty v = Raw.scm_string_null_p v
let string ls = Raw.scm_string (List.to_raw Char.to_raw ls)
let len s = Raw.scm_string_length s |> Number.int_from_raw
let to_raw s = Raw.scm_from_locale_string s
let from_raw s =
let len = (len s) in
let buf = Ctypes.CArray.make Ctypes.char len in
let _ = Raw.scm_to_locale_stringbuf s (Ctypes.CArray.start buf) (Unsigned.Size_t.of_int len) in
Ctypes.string_from_ptr (Ctypes.CArray.start buf) ~length:len
end
module Symbol = struct
let symbol_p v = Raw.scm_symbol_p v
let is_symbol v = symbol_p v |> Bool.from_raw
let to_raw s = Raw.scm_string_from_utf8_symbol s
let from_raw s = Raw.scm_symbol_to_string s |> String.from_raw
let gensym s = Raw.scm_gensym (to_raw s)
end
module Error = struct
let error ?key ?fn_name message =
let key = match key with None -> Symbol.to_raw "ocaml-guile" | Some key -> key in
Raw.scm_error key fn_name (Some message) eol Bool.f
let catch ~tag f on_catch =
ignore @@ Raw.scm_c_catch
tag (fun null -> f (); null) Ctypes.null
(fun null key args -> on_catch key args; null) Ctypes.null
end
module Functions = struct
let safe_fun1 name f v =
try f v with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun2 name f v1 v2 =
try f v1 v2 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun3 name f v1 v2 v3 =
try f v1 v2 v3 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun4 name f v1 v2 v3 v4 =
try f v1 v2 v3 v4 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun5 name f v1 v2 v3 v4 v5 =
try f v1 v2 v3 v4 v5 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun6 name f v1 v2 v3 v4 v5 v6 =
try f v1 v2 v3 v4 v5 v6 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun7 name f v1 v2 v3 v4 v5 v6 v7 =
try f v1 v2 v3 v4 v5 v6 v7 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun8 name f v1 v2 v3 v4 v5 v6 v7 v8 =
try f v1 v2 v3 v4 v5 v6 v7 v8 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun9 name f v1 v2 v3 v4 v5 v6 v7 v8 v9 =
try f v1 v2 v3 v4 v5 v6 v7 v8 v9 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let safe_fun10 name f v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 =
try f v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 with e -> Error.error ~fn_name:name (Printexc.to_string e)
let register_fun1 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_1 fname ?no_opt ?rst (safe_fun1 fname f)
let register_fun2 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_2 fname ?no_opt ?rst (safe_fun2 fname f)
let register_fun3 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_3 fname ?no_opt ?rst (safe_fun3 fname f)
let register_fun4 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_4 fname ?no_opt ?rst (safe_fun4 fname f)
let register_fun5 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_5 fname ?no_opt ?rst (safe_fun5 fname f)
let register_fun6 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_6 fname ?no_opt ?rst (safe_fun6 fname f)
let register_fun7 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_7 fname ?no_opt ?rst (safe_fun7 fname f)
let register_fun8 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_8 fname ?no_opt ?rst (safe_fun8 fname f)
let register_fun9 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_9 fname ?no_opt ?rst (safe_fun9 fname f)
let register_fun10 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_10 fname ?no_opt ?rst (safe_fun10 fname f)
end
let eval ?state s =
let state = match state with Some state -> state | None -> Raw.scm_interaction_environment () in
Raw.scm_eval s state
let eval_string s = Raw.scm_eval_string (String.to_raw s)
let to_string ?printer v =
let printer = Option.value ~default:undefined printer in
Raw.scm_object_to_string v printer
|> String.from_raw
module Sexp = struct
let rec to_raw : Sexplib.Sexp.t -> scm =
function
| Atom a when Stdlib.(String.get a 0 = '"') ->
String.to_raw Stdlib.(String.sub a 1 (String.length a - 2))
| Atom a ->
begin match int_of_string_opt a with
| Some n -> Number.int_to_raw n
| None -> match float_of_string_opt a with
Some f -> Number.Float.to_raw f
| None -> Symbol.to_raw a
end
| List elts ->
List.to_raw to_raw elts
let rec from_raw : scm -> Sexplib.Sexp.t = fun s ->
if Pair.is_cons s
then loop [] s
else Sexplib.Sexp.Atom (to_string s)
and loop acc s =
if Pair.is_cons s
then
let hd = Pair.hd s in
let tl = Pair.tl s in
loop (from_raw hd :: acc) tl
else if List.is_null s
then Sexplib.Sexp.List (Stdlib.List.rev acc)
else Sexplib.Sexp.List (Stdlib.List.rev (from_raw s :: acc))
end
module Module = struct
let resolve v = Raw.scm_resolve_module v
let with_current_module ~modl f =
ignore @@ Raw.scm_call_with_current_module modl (fun null -> f (); null) Ctypes.null
let lookup_variable ~modl name = Raw.scm_variable modl name
let lookup ~modl name = Raw.scm_variable_ref modl name
let is_defined ?modl name =
let modl = Option.value modl ~default:undefined in
Raw.scm_defined_p (Symbol.to_raw name) modl |> Bool.from_raw
let define_module name f = Raw.scm_define_module name (fun null -> f (); null) Ctypes.null
let define name vl = Raw.scm_define name vl
let use v = Raw.scm_use_module v
let export name = Raw.scm_export name Ctypes.null
end