1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
open Base
open Hardcaml
let rec narrow x =
let open Bits in
if width x = 1
then x
else (
let m, l = msb x, lsbs x in
if Bits.equal m (msb l) then narrow l else x)
;;
let make_rom coefs =
let open Bits in
let n_coefs = List.length coefs in
let ( +: ) a b = Signed.(to_signal (of_signal a +: of_signal b)) in
let last = ones n_coefs in
let rec rom i =
let sum =
reduce
~f:( +: )
(List.map2_exn (bits_lsb i) coefs ~f:(fun i c -> mux2 i c (zero (width c))))
in
sum :: (if Bits.equal i last then [] else rom (i +:. 1))
in
let rom = List.map (rom (zero n_coefs)) ~f:narrow in
let max_width = List.fold (List.map rom ~f:width) ~init:0 ~f:max in
List.map rom ~f:(fun s -> sresize s max_width)
;;
open Signal
module Mode = struct
type t =
| Fixed
| Integer
[@@deriving sexp_of]
end
module type Config = sig
val mode : Mode.t
val accumulator_bits : int
val data_bits : int
val num_coefs : int
val rom_shift : int
end
module Make (Config : Config) = struct
open Config
module I = struct
type 'a t =
{ clk : 'a [@bits 1]
; clr : 'a [@bits 1]
; en : 'a [@bits 1]
; ld : 'a [@bits 1]
; addsub : 'a [@bits 1]
; x : 'a array [@length num_coefs] [@bits data_bits]
}
[@@deriving sexp_of, hardcaml]
end
module O = struct
type 'a t = { q : 'a [@bits accumulator_bits] } [@@deriving sexp_of, hardcaml]
end
let rac reg_spec ~en ~ld ~addsub ~romcoefs ~x =
let piso xi =
match mode with
| Fixed ->
lsb
(reg_fb reg_spec ~enable:en ~width:data_bits ~f:(fun d -> mux2 ld xi (srl d 1)))
| Integer ->
msb
(reg_fb reg_spec ~enable:en ~width:data_bits ~f:(fun d -> mux2 ld xi (sll d 1)))
in
let addr = concat_lsb (List.map x ~f:piso) -- "piso_addr" in
let coef = mux addr romcoefs -- "rom_coef" in
reg_fb reg_spec ~enable:en ~width:accumulator_bits ~f:(fun acc ->
let acc =
(match mode with
| Fixed -> sra
| Integer -> sll)
acc
1
in
let coef = sll (sresize coef accumulator_bits) rom_shift in
mux2 ld (zero accumulator_bits) (mux2 addsub (acc -: coef) (acc +: coef)))
;;
let create ~coefs (i : Signal.t I.t) =
let romcoefs = make_rom (Array.to_list coefs) in
let q =
rac
(Reg_spec.create () ~clock:i.clk ~clear:i.clr)
~en:i.en
~ld:i.ld
~addsub:i.addsub
~romcoefs:
(List.map romcoefs ~f:(fun coef -> Signal.of_constant (Bits.to_constant coef)))
~x:(Array.to_list i.x)
in
{ O.q }
;;
end