Num.Builders_57val coq_Builders_57_R__canonical__eqtype_Equality :
'a1 Eqtype.Coq_hasDecEq.axioms_ ->
Eqtype.Equality.coq_typeval coq_HB_unnamed_factory_59 :
'a1 Ssralg.GRing.Coq_isNmodule.axioms_ ->
'a1 Choice.Coq_hasChoice.axioms_ ->
'a1 Eqtype.Coq_hasDecEq.axioms_ ->
'a1 Ssralg.GRing.Nmodule_isSemiRing.axioms_ ->
'a1 Ssralg.GRing.SemiRing_hasCommutativeMul.axioms_ ->
'a1 Ssralg.GRing.Nmodule_isZmodule.axioms_ ->
'a1 Ssralg.GRing.Ring_hasMulInverse.axioms_ ->
'a1 Ssralg.GRing.ComUnitRing_isIntegral.axioms_ ->
('a1, 'a1) IntegralDomain_isNumRing.phant_axioms ->
'a1 Order.Order.LtLe_isPOrder.axioms_val coq_Num_IntegralDomain_isNumRing__to__Order_isPOrder :
'a1 Ssralg.GRing.Coq_isNmodule.axioms_ ->
'a1 Choice.Coq_hasChoice.axioms_ ->
'a1 Eqtype.Coq_hasDecEq.axioms_ ->
'a1 Ssralg.GRing.Nmodule_isSemiRing.axioms_ ->
'a1 Ssralg.GRing.SemiRing_hasCommutativeMul.axioms_ ->
'a1 Ssralg.GRing.Nmodule_isZmodule.axioms_ ->
'a1 Ssralg.GRing.Ring_hasMulInverse.axioms_ ->
'a1 Ssralg.GRing.ComUnitRing_isIntegral.axioms_ ->
('a1, 'a1) IntegralDomain_isNumRing.phant_axioms ->
'a1 Order.Order.Coq_isPOrder.axioms_