1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
open! Stdlib
module Make
(N : sig
type t
end)
(NSet : Set.S with type elt = N.t)
(NMap : Map.S with type key = N.t) =
struct
type t =
{ domain : NSet.t
; fold_children : 'a. (N.t -> 'a -> 'a) -> N.t -> 'a -> 'a
}
let successors g x = try NMap.find x g with Not_found -> NSet.empty
let add_edge g x y =
let l = successors g x in
NMap.add x (NSet.add y l) g
let invert g =
let h =
NSet.fold
(fun x h -> g.fold_children (fun y h -> add_edge h y x) x h)
g.domain
NMap.empty
in
{ domain = g.domain; fold_children = (fun f x a -> NSet.fold f (successors h x) a) }
module type DOMAIN = sig
type t
val equal : t -> t -> bool
val bot : t
end
module Solver (D : DOMAIN) = struct
let n = ref 0
let m = ref 0
type queue =
{ queue : N.t Queue.t
; mutable set : NSet.t
}
let is_empty st = Queue.is_empty st.queue
let pop st =
let x = Queue.pop st.queue in
st.set <- NSet.remove x st.set;
x
let push x st =
if not (NSet.mem x st.set)
then (
Queue.push x st.queue;
st.set <- NSet.add x st.set)
let rec iterate g f v w =
if is_empty w
then v
else
let x = pop w in
let a = NMap.find x v in
incr m;
let b = f v x in
let v = NMap.add x b v in
if not (D.equal a b)
then (
g.fold_children (fun y () -> push y w) x ();
iterate g f v w)
else iterate g f v w
let rec traverse g visited lst x =
if not (NSet.mem x visited)
then (
let visited = NSet.add x visited in
let visited =
g.fold_children (fun y visited -> traverse g visited lst y) x visited
in
lst := x :: !lst;
visited)
else visited
let traverse_all g =
let lst = ref [] in
let visited =
NSet.fold (fun x visited -> traverse g visited lst x) g.domain NSet.empty
in
assert (NSet.equal g.domain visited);
let queue = Queue.create () in
List.iter ~f:(fun x -> Queue.push x queue) !lst;
queue
let f g f =
n := 0;
m := 0;
let v =
NSet.fold
(fun x v ->
incr n;
NMap.add x D.bot v)
g.domain
NMap.empty
in
let w = { set = g.domain; queue = traverse_all g } in
let res = iterate g f v w in
res
end
end
module type ISet = sig
type t
type elt
val iter : (elt -> unit) -> t -> unit
val mem : t -> elt -> bool
val add : t -> elt -> unit
val remove : t -> elt -> unit
val copy : t -> t
end
module type Tbl = sig
type 'a t
type key
type size
val get : 'a t -> key -> 'a
val set : 'a t -> key -> 'a -> unit
val make : size -> 'a -> 'a t
end
module Make_Imperative
(N : sig
type t
end)
(NSet : ISet with type elt = N.t)
(NTbl : Tbl with type key = N.t) =
struct
type t =
{ domain : NSet.t
; iter_children : (N.t -> unit) -> N.t -> unit
}
let successors g x = NTbl.get g x
let add_edge g x y = NTbl.set g x (y :: successors g x)
let invert size g =
let h = NTbl.make size [] in
NSet.iter (fun x -> g.iter_children (fun y -> add_edge h y x) x) g.domain;
{ domain = g.domain; iter_children = (fun f x -> List.iter ~f (successors h x)) }
module type DOMAIN = sig
type t
val equal : t -> t -> bool
val bot : t
end
module Solver (D : DOMAIN) = struct
let n = ref 0
let m = ref 0
type queue =
{ queue : N.t Queue.t
; set : NSet.t
}
let is_empty st = Queue.is_empty st.queue
let pop st =
let x = Queue.pop st.queue in
NSet.add st.set x;
x
let push x st =
if NSet.mem st.set x
then (
Queue.push x st.queue;
NSet.remove st.set x)
let rec iterate g ~update f v w =
if is_empty w
then v
else
let x = pop w in
let a = NTbl.get v x in
incr m;
let b = f ~update v x in
if not (D.equal a b)
then (
NTbl.set v x b;
g.iter_children (fun y -> push y w) x);
iterate g ~update f v w
let rec traverse g to_visit lst x =
if NSet.mem to_visit x
then (
NSet.remove to_visit x;
incr n;
g.iter_children (fun y -> traverse g to_visit lst y) x;
lst := x :: !lst)
let traverse_all g =
let lst = ref [] in
let to_visit = NSet.copy g.domain in
NSet.iter (fun x -> traverse g to_visit lst x) g.domain;
let queue = Queue.create () in
List.iter ~f:(fun x -> Queue.push x queue) !lst;
{ queue; set = to_visit }
let f' size g f =
n := 0;
m := 0;
let v = NTbl.make size D.bot in
let w = traverse_all g in
let update ~children x =
if children then g.iter_children (fun y -> push y w) x else push x w
in
let res = iterate g ~update f v w in
res
let f size g f = f' size g (fun ~update:_ v x -> f v x)
end
end