Source file Test_prop.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

module TI = InnerTerm
module T = Term
module Fmt = CCFormat

module RW = Rewrite

let section = Util.Section.(make "test_prop")
let stat_narrow = Util.mk_stat "test_prop.narrow.calls"
let stat_narrow_fail = Util.mk_stat "test_prop.narrow.fails"
let stat_narrow_ok = Util.mk_stat "test_prop.narrow.ok"
let stat_narrow_step_term = Util.mk_stat "test_prop.narrow.steps_term"
let stat_narrow_step_lit = Util.mk_stat "test_prop.narrow.steps_lit"
let prof_narrow = Util.mk_profiler "test_prop.narrow"

type term = T.t
type lit = Literal.t
type clause = Literals.t
type form = clause list
type var = Type.t HVar.t

type res =
  | R_ok
  | R_fail of Subst.t (* counter-example *)

type 'a t_view =
  | T_Z of Z.t
  | T_Q of Q.t
  | T_bool of bool
  | T_cstor of ID.t * 'a list (* cstor application *)
  | T_app of ID.t * 'a list (* other application *)
  | T_fun_app of 'a * 'a list
  | T_builtin of Builtin.t * 'a list
  | T_fun of Type.t * 'a
  | T_var of var

(* TODO: β reduction *)

let t_view (t:term): term t_view = match T.view t with
  | T.AppBuiltin (Builtin.Int n, []) -> T_Z n
  | T.AppBuiltin (Builtin.Rat n, []) -> T_Q n
  | T.AppBuiltin (Builtin.True, []) -> T_bool true
  | T.AppBuiltin (Builtin.False, []) -> T_bool false
  | T.AppBuiltin (b, l) -> T_builtin (b,l)
  | T.Var v -> T_var v
  | T.Const id when Ind_ty.is_constructor id -> T_cstor (id, [])
  | T.Const id -> T_app (id, [])
  | T.Fun (arg,bod) -> T_fun (arg,bod)
  | T.App (f, l) ->
    begin match T.view f with
      | T.Const id when Ind_ty.is_constructor id -> T_cstor (id, l)
      | T.Const id -> T_app (id, l)
      | _ -> T_fun_app (f,l)
    end
  | T.DB _ -> assert false

let pp_form out (f:form): unit =
  let pp_c = Literals.pp in
  begin match f with
    | [c] -> pp_c out c
    | _ -> Fmt.fprintf out "∧{@[%a@]}" (Util.pp_list ~sep:"," pp_c) f
  end

let normalize_form (f:form): form =
  let module RW = Rewrite in
  let rec simplify c =
    let lit_abs = CCArray.find_idx Literal.is_absurd c in
    begin match lit_abs with
      | None -> c
      | Some (i,_) ->
        let new_c = CCArray.except_idx c i |> Array.of_list in
        simplify new_c
    end
  in
  (* fixpoint of rewriting *)
  let rec normalize_up_to fuel (c:clause): clause Iter.t =
    assert (fuel>=0);
    if fuel=0 then Iter.return c
    else normalize_step (fuel-1) c
  and normalize_step fuel c =
    let progress=ref false in
    (* how to normalize a term/lit (with restricted resources) *)
    let rw_term t =
      let t', rules = RW.Term.normalize_term ~max_steps:10 t in
      if not (RW.Term.Rule_inst_set.is_empty rules) then progress := true;
      t'
    in
    let rw_terms c = Literals.map rw_term c
    and rw_clause c = match RW.Lit.normalize_clause c with
      | None -> [c]
      | Some (cs,_,_,_,_,_) ->
        progress := true;
        cs
    and rm_trivial =
      List.filter (fun c -> not (Literals.is_trivial c))
    in
    let cs = c |> rw_terms |> rw_clause |> rm_trivial in
    if !progress
    then normalize_form fuel cs (* normalize each result recursively *)
    else (
      (* done, just simplify *)
      Iter.of_list cs |> Iter.map simplify
    )
  and normalize_form fuel (f:form): clause Iter.t =
    Iter.of_list f |> Iter.flat_map (normalize_up_to fuel)
  in
  normalize_form 3 f |> Iter.to_rev_list

module Narrow : sig
  val default_limit: int
  val check_form: limit:int -> form -> res
end = struct
  let default_limit = 10

  (* pseudo-substitution that is accumulated *)
  type subst_acc = T.t T.VarMap.t

  let subst_of_acc (s:subst_acc): Subst.t =
    T.VarMap.to_list s
    |> List.map (fun (v,t) -> (v,0),(t,1))
    |> Subst.FO.of_list' ?init:None

  let compose renaming (subst:Subst.t) (s1:subst_acc Scoped.t): subst_acc =
    let s1, sc1 = s1 in
    T.VarMap.map
      (fun t -> Subst.FO.apply renaming subst (t,sc1))
      s1

  let form_is_false (f:form): bool = List.exists Literals.is_absurd f

  (* free variables of the form *)
  let vars_of_form (f:form): var list =
    Iter.of_list f
    |> Iter.flat_map Literals.Seq.vars
    |> T.VarSet.of_seq |> T.VarSet.to_list

  (* perform term narrowing in [f] *)
  let narrow_term (acc:subst_acc) (f:form): (subst_acc*form) Iter.t =
    let sc_rule = 1 in
    let sc_c = 0 in
    (* find the various pairs (rule,subst) that can apply *)
    let subst_rule_l =
      Iter.of_list f
      |> Iter.flat_map Literals.Seq.terms
      |> Iter.flat_map T.Seq.subterms
      |> Iter.flat_map
        (fun t -> RW.Term.narrow_term ~scope_rules:sc_rule (t,sc_c))
      |> Iter.to_rev_list
      |> CCList.sort_uniq
        ~cmp:CCOrd.(pair RW.Term.Rule.compare Unif_subst.compare)
    in
    (* now do one step for each *)
    begin
      Iter.of_list subst_rule_l
      |> Iter.map
        (fun (rule,us) ->
           let renaming = Subst.Renaming.create() in
           let subst = Unif_subst.subst us in
           let c_guard = Literals.of_unif_subst renaming us in
           (* evaluate new formula by substituting and evaluating *)
           let f' =
             f
             |> List.map
               (fun lits ->
                  CCArray.append c_guard
                    (Literals.apply_subst renaming subst (lits,sc_c)))
             |> normalize_form
           in
           (* make new formula *)
           Util.incr_stat stat_narrow_step_term;
           Util.debugf ~section 5
             "(@[<2>test_prop.narrow_term@ :from %a@ :to %a@ :rule %a@ :subst %a@])"
             (fun k->k pp_form f pp_form f' RW.Term.Rule.pp rule Subst.pp subst);
           let new_acc = compose renaming subst (acc,sc_c) in
           new_acc, f')
    end

  (* perform lit narrowing in [f] *)
  let narrow_lit (acc:subst_acc) (f:form): (subst_acc*form) Iter.t =
    let sc_rule = 1 in
    let sc_c = 0 in
    (* find the various pairs (rule,subst) that can apply *)
    let subst_rule_l =
      Iter.of_list f
      |> Iter.flat_map Iter.of_array
      |> Iter.flat_map
        (fun lit -> RW.Lit.narrow_lit ~scope_rules:sc_rule (lit,sc_c))
      |> Iter.to_rev_list
      |> CCList.sort_uniq
        ~cmp:CCOrd.(triple RW.Lit.Rule.compare Unif_subst.compare (list compare))
    in
    (* now do one step for each *)
    begin
      Iter.of_list subst_rule_l
      |> Iter.map
        (fun (rule,us,_) ->
           let renaming = Subst.Renaming.create() in
           let subst = Unif_subst.subst us in
           let c_guard = Literals.of_unif_subst renaming us in
           (* evaluate new formula by substituting and evaluating *)
           let f' =
             f
             |> List.map
               (fun lits ->
                  CCArray.append c_guard
                    (Literals.apply_subst renaming subst (lits,sc_c)))
             |> normalize_form
           in
           (* make new formula *)
           Util.incr_stat stat_narrow_step_lit;
           Util.debugf ~section 5
             "(@[<2>test_prop.narrow_lit@ :from %a@ :to %a@ :rule %a@ :subst %a@])"
             (fun k->k pp_form f pp_form f' RW.Lit.Rule.pp rule Subst.pp subst);
           let new_acc = compose renaming subst (acc,sc_c) in
           new_acc, f')
    end

  exception Found_unsat of Subst.t

  let check_form ~limit (f:form) =
    Util.incr_stat stat_narrow;
    let q = Queue.create() in
    let acc0 =
      vars_of_form f
      |> List.map (fun v -> v, T.var v)
      |> T.VarMap.of_list
    in
    Queue.push (acc0,f) q;
    let n = ref limit in
    try
      while !n > 0 && not (Queue.is_empty q) do
        decr n;
        let subst, f = Queue.pop q in
        let new_f_l =
          Iter.append (narrow_term subst f) (narrow_lit subst f)
        in
        Iter.iter
          (fun (acc,f') ->
             if form_is_false f' then (
               let subst = subst_of_acc acc in
               raise (Found_unsat subst);
             );
             Queue.push (acc,f') q)
          new_f_l;
      done;
      R_ok
    with Found_unsat subst ->
      R_fail subst
end

let default_limit = Narrow.default_limit

let check_form ?(limit=Narrow.default_limit) (f:form): res =
  Util.with_prof prof_narrow (Narrow.check_form ~limit) f

(* [t] head symbol is a function that is not a constructor *)
let starts_with_fun (t:T.t): bool = match T.head t with
  | None -> false
  | Some id -> not (Ind_ty.is_constructor id)