1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
open Solver_types
module Fmt = CCFormat
let merge = List.merge Atom.compare
let _c = ref 0
let fresh_pcl_name () = incr _c; "R" ^ (string_of_int !_c)
let find_duplicates (c:clause) : atom list =
let r =
Array.fold_left
(fun acc a ->
if Atom.marked a then Atom.Set.add a acc else (Atom.mark a; acc))
Atom.Set.empty c.c_atoms
in
Array.iter Atom.unmark c.c_atoms;
Atom.Set.to_list r
let find_absurd (c:clause) : atom list =
Array.fold_left
(fun acc a -> if Atom.is_absurd a then a::acc else acc) [] c.c_atoms
let[@inline] cl_list_eq c d = CCList.equal Atom.equal c d
let[@inline] prove conclusion = conclusion
type t = clause
and node = {
conclusion : clause;
step : step;
}
and step =
| Hypothesis
| Assumption
| Lemma of lemma
| Simplify of {
init: t;
duplicates: atom list;
absurd: atom list;
}
| Hyper_res of {
init: t;
steps: premise_step list;
}
let[@inline] conclusion n = n.conclusion
let[@inline] step n = n.step
let pp_clause_step out = function
| Step_resolve {c;pivot} ->
Fmt.fprintf out "(@[res@ %a@ :on %a@])" Clause.debug c Term.debug pivot
let debug_step out (s:step) : unit = match s with
| Hypothesis -> Fmt.string out "hypothesis"
| Assumption -> Fmt.string out "assumption"
| Lemma l -> Fmt.fprintf out "(@[lemma %a@])" Lemma.pp l
| Simplify s ->
Fmt.fprintf out "(@[<hv>simplify@ :from %a@ :dups (@[%a@])@ :absurd (@[%a@])@])"
Clause.debug s.init
Clause.debug_atoms s.duplicates Clause.debug_atoms s.absurd
| Hyper_res {init;steps} ->
Fmt.fprintf out "(@[<hv>hyper_res@ :init %a@ %a@])"
Clause.debug init (Util.pp_list pp_clause_step) steps
let[@inline] mk_node conclusion step = {conclusion; step}
module Reconstruct : sig
val expand : t -> node
val recompute_update_proof_of_atom : atom -> value -> t
val prove_unsat : clause -> t
val prove_atom : atom -> t option
end = struct
let find_pivots (init:clause) (l:clause list) : premise_step list =
Array.iter Atom.mark init.c_atoms;
let steps =
List.map
(fun c ->
let pivot =
match
Iter.of_array c.c_atoms
|> Iter.filter
(fun a -> Atom.marked (Atom.neg a))
|> Iter.to_list
with
| [a] -> a
| [] ->
Error.errorf "(@[proof.expand.pivot_missing@ %a@])"
Clause.debug c
| pivots ->
Error.errorf "(@[proof.expand.multiple_pivots@ %a@ :pivots %a@])"
Clause.debug c Clause.debug_atoms pivots
in
Array.iter Atom.mark c.c_atoms;
Atom.unmark pivot;
Atom.unmark (Atom.neg pivot);
Step_resolve {pivot=Atom.term pivot;c})
l
in
Array.iter Atom.unmark init.c_atoms;
List.iter (fun c -> Array.iter Atom.unmark c.c_atoms) l;
steps
let expand (conclusion:clause) : node =
Log.debugf 15 (fun k -> k "(@[proof.expanding@ %a@])" Clause.debug conclusion);
begin match conclusion.c_premise with
| Lemma l -> mk_node conclusion (Lemma l)
| Hyp -> mk_node conclusion Hypothesis
| Local -> mk_node conclusion Assumption
| P_steps {init;steps} ->
let step = Hyper_res {init;steps} in
mk_node conclusion step
| Simplify c ->
let duplicates = find_duplicates c in
let absurd = find_absurd c in
mk_node conclusion (Simplify {init=c; duplicates; absurd})
| P_raw_steps [] ->
Error.errorf "proof: resolution error (no premise)@ %a@ :premise %a"
Clause.debug conclusion Premise.pp conclusion.c_premise
| P_raw_steps [_] ->
Error.errorf "proof: resolution error (wrong hyperres)@ %a@ :premise %a"
Clause.debug conclusion Premise.pp conclusion.c_premise
| P_raw_steps ((c::r) as l) ->
Log.debugf 30 (fun k->k"(@[<hv>proof.expanding.raw@ %a@])"
(Util.pp_list Clause.debug ) l);
let steps = find_pivots c r in
conclusion.c_premise <- Premise.steps c steps;
let step = Hyper_res {init=c; steps} in
mk_node conclusion step
end
let[@inline] set_atom_reason (a:atom) (r:reason) : unit =
begin match a.a_term.t_assign with
| TA_none -> assert false
| TA_assign{value;_} ->
a.a_term.t_assign <- TA_assign{value;reason=r;level=0}
end
let rec recompute_update_proof_of_atom (a:atom) (v:value) : clause =
assert (Atom.level a >= 0);
begin match Atom.reason a with
| Some (Bcp c) ->
Log.debugf 10
(fun k -> k "(@[<hv>proof.analyzing@ :atom %a@ :val %a@ :bcp %a@])"
Atom.debug a Value.pp v Clause.debug c);
if Array.length c.c_atoms = 1 then (
Log.debugf 15 (fun k -> k "(@[<hv>proof.analyze.keep_old_reason@ %a@])" Atom.debug a);
c
) else (
let premise =
Array.fold_left
(fun acc b ->
if Atom.equal (Atom.neg a) b then acc
else (
let c = recompute_update_proof_of_atom b Value.false_ in
c :: acc
))
[]
c.c_atoms
in
let premise = Premise.raw_steps (c :: premise) in
let c' = Clause.make [Atom.neg a] premise in
set_atom_reason a (Bcp c');
Log.debugf 15
(fun k -> k "(@[<hv>proof.analyze.new_reason@ %a@ :bcp %a@])" Atom.debug a Clause.debug c');
c'
)
| _ ->
Error.errorf "(@[proof.analyze.cannot_prove_atom@ %a@])" Atom.debug a
end
let prove_unsat (conflict:clause) : clause =
if Array.length conflict.c_atoms = 0 then conflict
else (
Log.debugf 2 (fun k -> k "(@[@{<Green>proof.proving_unsat@}@ :from %a@])" Clause.debug conflict);
let premise =
Array.fold_left
(fun acc a ->
assert (Atom.is_false a || Atom.can_eval_to_false a);
recompute_update_proof_of_atom a Value.false_ :: acc)
[] conflict.c_atoms
in
let premise = Premise.raw_steps (conflict :: premise) in
let res = Clause.make [] premise in
Log.debugf 2 (fun k -> k "(@[@{<Green>proof.proof_found@}@ %a@ :premise %a@])"
Clause.debug res Premise.pp premise);
res
)
let prove_atom a =
if Atom.is_true a && Atom.level a = 0 then (
Some (recompute_update_proof_of_atom a Value.true_)
) else (
None
)
end
include Reconstruct
let is_leaf = function
| Hypothesis
| Assumption
| Lemma _ -> true
| Simplify _ | Hyper_res _ -> false
let[@inline] parents_steps l : t list =
List.map
(function Step_resolve {c;_} -> c)
l
let[@inline] parents_raw_steps l : t list = l
let parents = function
| Hypothesis
| Assumption
| Lemma _ -> []
| Simplify {init=p;_} -> [p]
| Hyper_res {init;steps} ->
init :: parents_steps steps
let expl = function
| Hypothesis -> "hypothesis"
| Assumption -> "assumption"
| Lemma _ -> "lemma"
| Simplify _ -> "simplify"
| Hyper_res _ -> "hyper_res"
let unsat_core proof =
let rec aux res visited c k =
if Clause.visited c then (
k res visited
) else (
Clause.mark_visited c;
begin match c.c_premise with
| Hyp | Local -> k (c :: res) visited
| Lemma _ -> k res visited
| Simplify d -> aux res (c :: visited) d k
| P_steps {init;steps} ->
aux_l res (init::visited) (parents_steps steps) k
| P_raw_steps cs -> aux_l res (c::visited) (parents_raw_steps cs) k
end
)
and aux_l res visited l k = match l with
| [] -> k res visited
| c :: r ->
aux res visited c
(fun res visited -> aux_l res visited r k)
in
let res, visited = aux [] [] proof CCPair.make in
List.iter Clause.clear_visited res;
List.iter Clause.clear_visited visited;
res
module H = Clause.Tbl
type task =
| Enter of t
| Leaving of t
let[@inline] pop_opt s = try Some (Stack.pop s) with Stack.Empty -> None
let rec fold_aux s h f acc =
begin match pop_opt s with
| None -> acc
| Some (Leaving c) ->
H.add h c true;
fold_aux s h f (f acc (expand c))
| Some (Enter c) ->
if not (H.mem h c) then (
Stack.push (Leaving c) s;
let node = expand c in
begin match node.step with
| Simplify {init=p1;_} ->
Stack.push (Enter p1) s
| Hyper_res {init;steps} ->
Stack.push (Enter init) s;
List.iter
(function
| Step_resolve {c;_} -> Stack.push (Enter c) s)
steps;
| Hypothesis | Assumption | Lemma _ -> ()
end
);
fold_aux s h f acc
end
let fold f acc p =
let h = H.create 42 in
let s = Stack.create () in
Stack.push (Enter p) s;
fold_aux s h f acc
let[@inline] iter f p = fold (fun () x -> f x) () p
module Check : sig
val check_step : t -> unit
val check : t -> unit
end = struct
let[@inline] set_of_c (c:clause): Atom.Set.t =
Iter.of_array c.c_atoms |> Atom.Set.of_iter
let pp_a_set out (a:Atom.Set.t) : unit =
Fmt.fprintf out "(@[<v>%a@])"
(Util.pp_iter ~sep:" ∨ " Atom.debug) (Atom.Set.to_iter a)
type state = {
killed: Term.Set.t;
cur: Atom.Set.t;
}
let perform_hyper_step (init:t) (steps:premise_step list) : state =
List.fold_left
(fun (st:state) step ->
begin match step with
| Step_resolve {pivot;c=c2} ->
Array.fold_left
(fun st a ->
let t = Atom.term a in
if Term.Set.mem t st.killed then st
else if Term.equal pivot t then (
if not (Atom.Set.mem (Atom.neg a) st.cur) then (
Error.errorf
"(@[<hv>proof.check_hyper_res.pivot_not_found@ \
:pivot %a@ :c1 %a@ :c2 %a@])"
Term.debug pivot pp_a_set st.cur Clause.debug c2
);
{ cur=Atom.Set.remove (Atom.neg a) st.cur; killed=Term.Set.add t st.killed }
) else (
{ st with cur=Atom.Set.add a st.cur }
))
st c2.c_atoms
end)
{cur=set_of_c init; killed=Term.Set.empty}
steps
let check_node (n:node) : unit =
let check_same_set ~ctx ~expect:c d =
if not (Atom.Set.equal c d) then (
Error.errorf
"(@[<hv>proof.check.distinct_clauses@ :ctx %s@ \
:c1(expect) %a@ :c2(got) %a@ :c1\\c2 %a@ :c2\\c1 %a@])"
ctx pp_a_set c pp_a_set d
pp_a_set (Atom.Set.diff c d)
pp_a_set (Atom.Set.diff d c)
);
in
let concl = conclusion n in
let step = step n in
Log.debugf 15 (fun k->k"(@[<hv>proof.check.step@ :concl %a@ :step %a@])"
Clause.debug concl debug_step step);
begin match step with
| Lemma _ -> ()
| Hypothesis -> ()
| Assumption -> ()
| Simplify s ->
let dups' = find_duplicates s.init in
if not (Atom.Set.equal
(Atom.Set.of_list s.duplicates) (Atom.Set.of_list dups')) then (
Error.errorf
"(@[<hv>proof.check.invalid_simplify_step@ :from %a@ :to %a@ :dups1 %a@ :dups2 %a@])"
Clause.debug s.init Clause.debug concl Clause.debug_atoms s.duplicates
Clause.debug_atoms dups'
);
begin match CCList.find_pred (fun a -> not (Atom.is_absurd a)) s.absurd with
| None -> ()
| Some a ->
Error.errorf
"(@[<hv>proof.check.invalid_simplify_step@ :in %a@ :not-absurd %a@])"
Clause.debug s.init Atom.debug a
end;
let c = set_of_c s.init in
let c = Atom.Set.diff c (Atom.Set.of_list s.absurd) in
check_same_set ~ctx:"in-dedup" c ~expect:(set_of_c concl)
| Hyper_res {init;steps} ->
let st = perform_hyper_step init steps in
check_same_set ~ctx:"in-res" st.cur ~expect:(set_of_c concl);
Atom.Set.iter
(fun a ->
if Atom.Set.mem (Atom.neg a) st.cur then (
Error.errorf
"(@[<hv>proof.check_hyper_res.clause_is_tautology@ \
:clause %a@])"
pp_a_set st.cur
))
st.cur;
()
end
let check_step (p:t) : unit = check_node @@ expand p
let check (p:t) : unit =
iter check_node p
end
include Check