123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359(****************************************************************************)(* *)(* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *)(* *)(* Copyright (C) 2018-2019 The MOPSA Project. *)(* *)(* This program is free software: you can redistribute it and/or modify *)(* it under the terms of the GNU Lesser General Public License as published *)(* by the Free Software Foundation, either version 3 of the License, or *)(* (at your option) any later version. *)(* *)(* This program is distributed in the hope that it will be useful, *)(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)(* GNU Lesser General Public License for more details. *)(* *)(* You should have received a copy of the GNU Lesser General Public License *)(* along with this program. If not, see <http://www.gnu.org/licenses/>. *)(* *)(****************************************************************************)(**
Relation - Relations (or multimaps) between ordered sets.
*)openRelationSigmoduleMake(Dom:OrderedType)(CoDom:OrderedType)=structmoduleCoDomSet=SetExt.Make(CoDom)moduleDomMap=MapExt.Make(Dom)typet=CoDomSet.tDomMap.t(** A relation is a map from the domain to the power-set of the codomain.
The image f(x) of an element is never the empty set.
*)typedom=Dom.ttypecodom=CoDom.ttypecodom_set=CoDomSet.ttypebinding=dom*codomletempty=DomMap.emptyletimagexr=tryDomMap.findxrwithNot_found->CoDomSet.emptyletset_imagexysr=ifCoDomSet.is_emptyysthenDomMap.removexrelseDomMap.addxysrletis_image_emptyxr=not(DomMap.memxr)letis_emptyr=DomMap.is_emptyrletsingletonxy=DomMap.singletonx(CoDomSet.singletony)letaddxyr=DomMap.addx(CoDomSet.addy(imagexr))rletadd_setxysr=set_imagex(CoDomSet.unionys(imagexr))rletremovexyr=set_imagex(CoDomSet.removey(imagexr))rletremove_setxysr=set_imagex(CoDomSet.diff(imagexr)ys)rletremove_imagexr=DomMap.removexrletmemxyr=CoDomSet.memy(imagexr)letof_listl=List.fold_left(funr(x,y)->addxyr)emptylletmin_bindingr=letx,ys=DomMap.min_bindingrinx,CoDomSet.min_eltysletmax_bindingr=letx,ys=DomMap.max_bindingrinx,CoDomSet.max_eltysletchooser=letx,ys=DomMap.chooserinx,CoDomSet.chooseysletcardinalr=DomMap.fold(fun_ir->r+CoDomSet.cardinali)r0letiterfr=DomMap.iter(funxi->CoDomSet.iter(funy->fxy)i)rletfoldfracc=DomMap.fold(funxiacc->CoDomSet.fold(funyacc->fxyacc)iacc)raccletbindingsr=List.rev(fold(funxyl->(x,y)::l)r[])letmapfr=fold(funxyacc->letx',y'=fxyinaddx'y'acc)remptyletdomain_mapfr=DomMap.fold(funxir->add_set(fx)ir)remptyletcodomain_mapfr=DomMap.map(CoDomSet.mapf)rletfor_allfr=DomMap.for_all(funxi->CoDomSet.for_all(funy->fxy)i)rletexistsfr=DomMap.exists(funxi->CoDomSet.exists(funy->fxy)i)rletfilterfr=DomMap.fold(funxir->set_imagex(CoDomSet.filter(funy->fxy)i)r)rr(* binary operations *)letcomparer1r2=DomMap.compareCoDomSet.comparer1r2letequalr1r2=DomMap.equalCoDomSet.equalr1r2letsubsetr1r2=DomMap.for_all2zo(fun__->false)(fun__->true)(fun_->CoDomSet.subset)r1r2letunionr1r2=DomMap.map2zo(fun_ys->ys)(fun_ys->ys)(fun_->CoDomSet.union)r1r2letinterr1r2=(* start from r1
- remove x's image if x is only in r1
- nothing if x is only in r2 (as it is not in r1)
- update x's image if both in r1 and r2
*)DomMap.fold2zo(funx_r->remove_imagexr)(fun__r->r)(funxys1ys2r->set_imagex(CoDomSet.interys1ys2)r)r1r2r1letdiffr1r2=(* start from r1
- nothing if x is only in r1
- nothing if x is only in r2 (as it is not in r1)
- update x's image if both in r1 and r2
*)DomMap.fold2o(fun__r->r)(fun__r->r)(funxys1ys2r->set_imagex(CoDomSet.diffys1ys2)r)r1r2r1letiter2f1f2fr1r2=DomMap.iter2o(funx->CoDomSet.iter(f1x))(funx->CoDomSet.iter(f2x))(funx->CoDomSet.iter2(f1x)(f2x)(fx))r1r2letiter2_difff1f2r1r2=DomMap.iter2o(funx->CoDomSet.iter(f1x))(funx->CoDomSet.iter(f2x))(funx->CoDomSet.iter2_diff(f1x)(f2x))r1r2letfold2f1f2fr1r2acc=DomMap.fold2o(funx->CoDomSet.fold(f1x))(funx->CoDomSet.fold(f2x))(funx->CoDomSet.fold2(f1x)(f2x)(fx))r1r2accletfold2_difff1f2r1r2=DomMap.fold2zo(funx->CoDomSet.fold(f1x))(funx->CoDomSet.fold(f2x))(funx->CoDomSet.fold2_diff(f1x)(f2x))r1r2letfor_all2f1f2fr1r2=DomMap.for_all2o(funx->CoDomSet.for_all(f1x))(funx->CoDomSet.for_all(f2x))(funx->CoDomSet.for_all2(f1x)(f2x)(fx))r1r2letfor_all2_difff1f2r1r2=DomMap.for_all2o(funx->CoDomSet.for_all(f1x))(funx->CoDomSet.for_all(f2x))(funx->CoDomSet.for_all2_diff(f1x)(f2x))r1r2letexists2f1f2fr1r2=DomMap.exists2o(funx->CoDomSet.exists(f1x))(funx->CoDomSet.exists(f2x))(funx->CoDomSet.exists2(f1x)(f2x)(fx))r1r2letexists2_difff1f2r1r2=DomMap.exists2o(funx->CoDomSet.exists(f1x))(funx->CoDomSet.exists(f2x))(funx->CoDomSet.exists2_diff(f1x)(f2x))r1r2(* slice operations *)letmap_slicefrab=DomMap.map_slice(funks->CoDomSet.map(funx->fkx)s)rabletiter_slicefrab=DomMap.iter_slice(funks->CoDomSet.iter(funx->fkx)s)rabletfold_slicefrabacc=DomMap.fold_slice(funksacc->CoDomSet.fold(funxacc->fkxacc)sacc)rabaccletfor_all_slicefrab=DomMap.for_all_slice(funks->CoDomSet.for_all(funx->fkx)s)rabletexists_slicefrab=DomMap.for_all_slice(funks->CoDomSet.for_all(funx->fkx)s)rab(* domain operations *)letiter_domainfr=DomMap.iterfrletfold_domainfracc=DomMap.foldfraccletmap_domainfr=DomMap.fold(funxir->set_imagex(fxi)r)rDomMap.emptyletfor_all_domainfr=DomMap.for_allfrletexists_domainfr=DomMap.existsfrletfilter_domainfr=DomMap.filterfrletmin_domainr=fst(DomMap.min_bindingr)letmax_domainr=fst(DomMap.max_bindingr)letchoose_domainr=fst(DomMap.chooser)letcardinal_domainr=DomMap.cardinalrletelements_domainr=List.rev(DomMap.fold(funx_l->x::l)r[])(* printing *)typerelation_printer={print_empty:string;print_begin:string;print_open:string;print_comma:string;print_close:string;print_sep:string;print_end:string;}letprinter_default={print_empty="{}";print_begin="{";print_open="(";print_comma=",";print_close=")";print_sep=";";print_end="}";}letprint_genoprinterdomcodomchs=ifis_emptysthenochprinter.print_emptyelse(letfirst=reftrueinochprinter.print_begin;iter(funxy->if!firstthenfirst:=falseelseochprinter.print_sep;ochprinter.print_open;domchx;ochprinter.print_comma;codomchy;ochprinter.print_close;)s;ochprinter.print_end)(* internal printing helper *)letprintprinterdomcodomchl=print_genoutput_stringprinterdomcodomchlletbprintprinterdomcodomchl=print_genBuffer.add_stringprinterdomcodomchlletfprintprinterdomcodomchl=print_genFormat.pp_print_stringprinterdomcodomchlletto_stringprinterdomcodoml=letb=Buffer.create10inprint_gen(fun()s->Buffer.add_stringbs)printer(fun()k->Buffer.add_stringb(domk))(fun()k->Buffer.add_stringb(codomk))()l;Buffer.contentsbend