Source file cliquetree.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

module CliqueTree(Gr : Sig.G) = struct

  (* Vertex signature *)
  module rec CliqueV :
  sig
    type t
    val compare : t -> t -> int
    val hash : t -> int
    val equal : t -> t -> bool
    val label : t -> t
    val create : Gr.V.t -> t
    val vertex : t -> Gr.V.t
    val number : t -> int
    val set_number : t -> int -> unit
    val clique : t -> int
    val set_clique : t -> int -> unit
    val mark : t -> int
    val incr_mark : t -> unit
    val m : t -> CVS.t
    val set_m : t -> CVS.t -> unit
    val last : t -> t
    val set_last : t -> t -> unit
  end =
  struct
    type t = {
      mutable mark: int;
      orig: Gr.V.t;
      mutable m: CVS.t;
      mutable last: t option;
      mutable number: int;
      mutable clique: int;
    }

    let compare x y = Gr.V.compare x.orig y.orig
    let hash x = Gr.V.hash x.orig
    let equal x y = Gr.V.equal x.orig y.orig

    let label x = x

    let create o = {
      mark = 0;
      orig = o;
      m = CVS.empty;
      last = None;
      number = 0;
      clique = -1;
    }

    let vertex x = x.orig

    let clique x = x.clique
    let set_clique x v = x.clique <- v

    let number x = x.number
    let set_number x v = x.number <- v

    let mark x = x.mark
    let incr_mark x =
      (*Printf.printf "Increasing mark of %s to %i\n%!"
        (Gr.v_to_string x.orig) (succ x.mark);*)
      x.mark <- succ x.mark

    let m x = x.m
    let set_m x v = x.m <- v

    let last x =
      match x.last with
        Some v -> v
      | None -> failwith "last not set"

    let set_last x v = x.last <- Some v

  end
  (* Clique tree vertex set *)
  and CVS : Set.S with type elt = CliqueV.t = Set.Make(CliqueV)

  (* The final clique tree vertex type:
     - set of original vertexes ordered by mark.
     - clique number.
  *)
  module CliqueTreeV =
    Util.DataV
      (struct type t = CliqueV.t list * CVS.t end)
      (struct
        type t = int
        let compare : t -> t -> int = Stdlib.compare
        let hash (x:t) = Hashtbl.hash x
        let equal (x:int) (y:int) = x = y
      end)

  module CliqueTreeE = struct
    type t = int * CVS.t

    let compare (x, _ : t) (y, _ : t) = Stdlib.compare x y

    let default = (0, CVS.empty)

    let create n s = (n, s)

    let vertices = snd

    let width g tri (_, x) =
      let vertices = List.map CliqueV.vertex (CVS.elements x) in
      let w =
        List.fold_left
          (fun w v ->
             List.fold_left
               (fun w v' ->
                  if v <> v' then
                    if not (Gr.mem_edge g v v') && Gr.mem_edge tri v v'
                    then succ w
                    else w
                  else w)
               w vertices)
          0 vertices
      in
      assert(w mod 2 = 0);
      w / 2
  end

  (* The returned tree *)
  module CliqueTree =
    Persistent.Digraph.ConcreteLabeled(CliqueTreeV)(CliqueTreeE)

  (* Intermediate graph *)
  module G = Persistent.Graph.Concrete(CliqueV)

  (* Creates the intermediate graph from the original *)
  module Copy = Gmap.Vertex(Gr)(struct include G include Builder.P(G) end)

  open CliqueV

  let mcs_clique g =
    (* initializations *)
    let n = Gr.nb_vertex g in
    let g' = Copy.map CliqueV.create g in
    let unnumbered = ref (G.fold_vertex CVS.add g' CVS.empty) in
    let pmark = ref (-1) in
    let order = ref [] in
    let cliques = Array.make n ([], CVS.empty) in
    let ties = ref [] in
    let j = ref 0 in
    (* loop, taking each unnumbered vertex in turn *)
    for i = n downto 1 do
      (* Find greatest unnumbered vertex
         if CVS.is_empty !unnumbered then
         Printf.printf "No more unnumbered vertices\n%!"
         else
         Printf.printf "%i unnumbered vertices remaining\n%!"
         (CVS.cardinal !unnumbered);
      *)
      let x, mark =
        let choosed = CVS.choose !unnumbered in
        CVS.fold
          (fun x ((_maxx, maxv) as max) ->
             let v = mark x in
             if v > maxv then (x, v) else max)
          !unnumbered (choosed, mark choosed)
      in
      (* peo construction *)
      order := x :: !order;
      (* now numbered *)
      unnumbered := CVS.remove x !unnumbered;
      if mark <= !pmark then begin
        (* Create a new clique (lemma 8) *)
        incr j;
        (* m x is the neighborhoud of x in the previous clique *)
        cliques.(!j) <- ([x], CVS.add x (m x));
        (* Use reverse map of cliques to find what clique
           we're connected to. m x is the width of the ties *)
        let clast = clique (last x) in
        ties := (clast, m x, !j) :: !ties;
      end else begin
        let l, c = cliques.(!j) in
        cliques.(!j) <- (x::l, CVS.add x c);
      end;
      G.iter_succ
        (fun y ->
           if number y == 0 then begin
             incr_mark y;
             set_m y (CVS.add x (m y));
           end;
           set_last y x)
        g' x;
      pmark := mark;
      set_number x i;
      set_clique x !j;
    done;
    let cliques =
      Array.mapi
        (fun i (l, c) -> CliqueTreeV.create (List.rev l, c) i)
        (Array.sub cliques 0 (succ !j))
    in
    let tree =
      Array.fold_left CliqueTree.add_vertex CliqueTree.empty cliques
    in
    let tree, _ =
      List.fold_left
        (fun (g, n) (i, verts, j) ->
           let label = CliqueTreeE.create n verts in
           let edge = CliqueTree.E.create cliques.(i) label cliques.(j) in
           (CliqueTree.add_edge_e g edge, succ n))
        (tree, 1) !ties
    in
    List.map CliqueV.vertex !order, tree, cliques.(0)

  let sons g x = CliqueTree.fold_succ (fun x y -> x :: y) g x []

  exception NotClique

  let test_simpliciality_first' l sons =
    List.for_all
      (fun son ->
         match !son with
         | [] -> false
         | xi :: _ ->
           let other = m xi in
           CVS.subset other l)
      sons

  let test_simpliciality_next vertices _sons =
    match vertices with
    | x :: tl ->
      begin
        try
          ignore(
            List.fold_left
              (fun vm v' ->
                 let vm' = CliqueV.m v' in
                 if CVS.equal vm' vm then
                   CVS.add v' vm'
                 else raise NotClique)
              (CVS.add x (m x)) tl);
          true
        with NotClique -> false
      end
    | _ -> true

  let is_chordal g =
    let _order, tree, root = mcs_clique g in
    let rec aux c =
      let csons = sons tree c in
      let s = List.map CliqueTreeV.data csons in
      let l = CliqueTreeV.data c in
      let sons () = List.map (fun (x,_) -> ref x) s in
      let first = test_simpliciality_first' (snd l) (sons ()) in
      let next = test_simpliciality_next (fst l) (sons ()) in
      first && next && (List.for_all aux csons)
    in
    aux root

  let maxwidth g tri tree =
    CliqueTree.fold_edges_e
      (fun e res ->
         let w = CliqueTreeE.width g tri (CliqueTree.E.label e) in
         max res w)
      tree 0

end