1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
let with_seed (f : unit -> unit) =
let seed =
match Sys.getenv_opt "RANDOM_SEED" with
| None ->
Random.self_init () ;
Random.int 1073741823
| Some v -> (
try int_of_string v
with _ ->
failwith
(Format.sprintf
"Invalid random seed '%s'. Maybe you need to run '$ unset \
RANDOM_SEED' in your terminal?"
v))
in
Printf.printf "Random seed: %d\n" seed ;
Random.init seed ;
f ()
let output_buffer = ref stdout
let with_output_to_file (f : unit -> unit) =
output_buffer := open_out "test.output" ;
f () ;
close_out !output_buffer
let set_seed s = Random.init s
let bigstring_of_file filename ~hash =
let bs =
let fd = Unix.openfile filename [Unix.O_RDONLY] 0o440 in
Bigarray.array1_of_genarray
@@ Unix.map_file
fd
Bigarray.char
Bigarray.c_layout
false
[| -1|]
in
let computed_hash =
let st =
Hacl_star.EverCrypt.Hash.init ~alg:Hacl_star.SharedDefs.HashDefs.BLAKE2b
in
let len = 48 in
let msg = Bytes.create len in
for i = 0 to (Bigstringaf.length bs / len) - 1 do
Bigstringaf.blit_to_bytes bs ~src_off:(i * len) msg ~dst_off:0 ~len ;
Hacl_star.EverCrypt.Hash.update ~st ~msg
done ;
Hacl_star.EverCrypt.Hash.finish ~st
in
let hash = Hex.to_bytes (`Hex hash) in
if computed_hash <> hash then failwith ("Invalid hash: " ^ filename) ;
bs
let load_real_srs prefix =
let open Octez_bls12_381_polynomial.Bls12_381_polynomial.Srs in
let ( // ) s1 s2 = s1 ^ "/" ^ s2 in
( ( Srs_g1.of_bigstring
(bigstring_of_file
(prefix // "srs_filecoin_g1_21")
~hash:
"25281025229b67eed4bcf4451dca0e5ac3fc6c5bf5934f54449105a7feba8049cf0e9f390f23528d5f860387c07a6b374f2ef6dad6fd73b051e4cc4699974738")
~len:(1 lsl 21)
|> Result.get_ok,
Srs_g2.of_bigstring
(bigstring_of_file
(prefix // "srs_filecoin_g2_1")
~hash:
"ee034f5e6d3d9dc2097861ffb278438573f0a9c84afd6806a5b53b158b0e6e6847dc8a84e1b01c3c161ed4593816d59bf4817c797ffad6fffbea143987e340a4")
~len:2
|> Result.get_ok ),
( Srs_g1.of_bigstring
(bigstring_of_file
(prefix // "srs_zcash_g1_1")
~hash:
"435fd5b85e1e3271c8e241b25da799df3e312e67d06c9e009fb967a8d597ed37897047aa48659526ce10db857ee02c64e6f577ef80485d34d7506fff40a901b4")
~len:2
|> Result.get_ok,
Srs_g2.of_bigstring
(bigstring_of_file
(prefix // "srs_zcash_g2_10")
~hash:
"39ebc126d18caade1bee9294124292a089746441cee6b80efb37f0a1e6a37e8acabfa3c0a3b0c6ce15ea3a46a5f5373be222bb1a54b332d43e25f489c66dec49")
~len:(1 lsl 10)
|> Result.get_ok ) )
let make_fake_srs () =
let open Octez_bls12_381_polynomial.Bls12_381_polynomial in
(Srs.generate_insecure 14 1, Srs.generate_insecure 1 14)
let srs =
match Sys.getenv_opt "SRS_DIR" with
| None -> make_fake_srs ()
| Some prefix -> load_real_srs prefix
let rec repeat n f =
if n <= 0 then ()
else (
f () ;
repeat (n - 1) f)
let must_fail f =
let exception Local in
try
(try f () with _ -> raise Local) ;
assert false
with
| Local -> ()
| _ -> assert false
let string_of_bytes bytes =
if bytes <= 1024. then Printf.sprintf "%3.2f B " bytes
else
let kilobytes = bytes /. 1024. in
if kilobytes <= 1024. then Printf.sprintf "%3.2f KB" kilobytes
else
let megabytes = kilobytes /. 1024. in
if megabytes <= 1024. then Printf.sprintf "%3.2f MB" megabytes
else
let gigabytes = megabytes /. 1024. in
Printf.sprintf "%.2f GB" gigabytes
let hash_of_repr t v =
let serialized_bytes =
Bytes.of_string @@ Repr.(unstage @@ to_bin_string t) v
in
Hacl_star.Hacl.Blake2b_32.hash serialized_bytes 32 |> Hex.of_bytes |> Hex.show
let get_input_com_secrets private_inputs input_com_sizes =
let secrets, _ =
List.fold_left
(fun (secrets, l) size ->
(Array.sub private_inputs l size :: secrets, l + size))
([], 0)
input_com_sizes
in
List.rev secrets
module Time = struct
type data = {n : int; sum : float; sum_squares : float; last : float}
let str_time = ref ""
let zero_data = {n = 0; sum = 0.; sum_squares = 0.; last = 0.}
let setup = ref zero_data
let prove = ref zero_data
let verify = ref zero_data
let reset () =
setup := zero_data ;
prove := zero_data ;
verify := zero_data
let update data time =
let sum = time +. !data.sum in
let sum_squares = (time *. time) +. !data.sum_squares in
data := {n = !data.n + 1; sum; sum_squares; last = time}
let mean data = !data.sum /. float_of_int !data.n
let var data =
let m = mean data in
(!data.sum_squares /. float_of_int !data.n) -. (m *. m)
let std data = sqrt (var data)
let string_of_time t =
if t > 60. then Printf.sprintf "%3.2f m " (t /. 60.)
else if t > 1. then Printf.sprintf "%3.2f s " t
else if t > 0.001 then Printf.sprintf "%3.2f ms" (t *. 1_000.)
else Printf.sprintf "%3.0f µs" (t *. 1_000_000.)
let time description f =
Gc.full_major () ;
let st1 = Gc.stat () in
let start = Unix.gettimeofday () in
let res = f () in
let stop = Unix.gettimeofday () in
let d = stop -. start in
let () =
match description with
| "setup" -> update setup d
| "prove" -> update prove d
| "verify" -> update verify d
| _ -> ()
in
let t_str = string_of_time d in
let st2 = Gc.stat () in
let allocations =
(st2.minor_words +. st2.major_words -. st2.promoted_words
-. (st1.minor_words +. st1.major_words -. st1.promoted_words))
*. 8.
|> string_of_bytes
in
let top_heap_words =
if st2.top_heap_words > st1.top_heap_words then
st2.top_heap_words |> float_of_int |> Float.mul 8. |> string_of_float
else "?"
in
Printf.printf
"%-8s: Time: %8s Allocations %6s MaxHeap: %s\n%!"
description
t_str
allocations
top_heap_words ;
res
let reset_str () = str_time := ""
let update_str ? () =
let =
match header with None -> "" | Some -> header ^ "\n"
in
str_time :=
!str_time
^ Printf.sprintf
"%s%f\n%f\n%f\n"
header
!setup.last
!prove.last
!verify.last
let print_time_in_file file =
let oc = open_out file in
Printf.fprintf oc "%s" !str_time ;
close_out oc
let bench_test_circuit ~nb_rep func () =
reset () ;
repeat nb_rep func ;
assert (nb_rep = !setup.n && nb_rep = !prove.n && nb_rep = !verify.n) ;
Printf.printf
"\nTimes over %d repetitions (95%% confidence interval):\n\n"
nb_rep ;
let pp = string_of_time in
let z = 1.96 in
Printf.printf " Setup : %s ± %s\n" (pp (mean setup)) (pp (z *. std setup)) ;
Printf.printf " Prove : %s ± %s\n" (pp (mean prove)) (pp (z *. std prove)) ;
Printf.printf
" Verify: %s ± %s\n"
(pp (mean verify))
(pp (z *. std verify)) ;
Printf.printf "\n"
let time_if_verbose verbose description f =
if verbose then time description f else f ()
end
module Make (Main : Plonk.Main_protocol.S) = struct
open Plonk.Circuit
module Singleton = struct
include Main
let setup ~zero_knowledge circuit ~srs =
let circuits_map = Plonk.SMap.singleton "" (circuit, 1) in
Main.setup ~zero_knowledge circuits_map ~srs
let prove pp ~(inputs : circuit_prover_input list) =
let inputs = Plonk.SMap.singleton "" inputs in
Main.prove pp ~inputs
let verify pp ~inputs proof =
let inputs = Plonk.SMap.singleton "" inputs in
Main.verify pp ~inputs proof
end
let multi_input_commit pp input_commitment_secrets =
List.fold_left
(fun (cmts, shift) secret ->
(Main.input_commit ~shift pp secret :: cmts, shift + Array.length secret))
([], 0)
input_commitment_secrets
|> fst |> List.rev
let print_info name zero_knowledge proof pp_prover pp_verifier =
let proof_size =
Data_encoding.Binary.length Main.proof_encoding proof |> Float.of_int
in
let proof_hash = hash_of_repr Main.proof_t proof in
let prover_pp_hash =
hash_of_repr Main.prover_public_parameters_t pp_prover
in
let verifier_pp_hash =
hash_of_repr Main.verifier_public_parameters_t pp_verifier
in
Printf.fprintf
!output_buffer
"%s:\n\
Proof size: %s\n\
Proof hash: %s\n\
Prover_pp hash: %s\n\
Verifier_pp hash: %s\n\n"
(if zero_knowledge then "zk-" ^ name else name)
(string_of_bytes proof_size)
proof_hash
prover_pp_hash
verifier_pp_hash
let make_secret pp_prover input_com_sizes witness =
let open Main in
let input_com_secrets = get_input_com_secrets witness input_com_sizes in
let input_commitments = multi_input_commit pp_prover input_com_secrets in
{witness; input_commitments}
let test_circuits ~name ?(zero_knowledge = false) ?(outcome = Cases.Valid)
?(verbose = false) circuit_map private_inputs =
let time_if_verbose verbose description f =
if verbose then Time.time description f else f ()
in
if verbose then
Plonk.SMap.iter
(fun cname (circuit, _n) ->
Format.printf
"circuit '%s' has %d constraints\n"
cname
circuit.circuit_size)
circuit_map ;
let pp_prover, pp_verifier =
time_if_verbose verbose "setup" (fun () ->
Main.setup ~zero_knowledge circuit_map ~srs)
in
let prover_inputs =
Plonk.SMap.mapi
(fun c_name ->
let c = fst (Plonk.SMap.find c_name circuit_map) in
List.map (make_secret pp_prover c.input_com_sizes))
private_inputs
in
let verifier_inputs = Main.to_verifier_inputs pp_prover prover_inputs in
match outcome with
| Valid -> (
let proof =
time_if_verbose verbose "prove" (fun () ->
Main.prove pp_prover ~inputs:prover_inputs)
in
Gc.full_major () ;
let v =
time_if_verbose verbose "verify" (fun () ->
Main.verify pp_verifier ~inputs:verifier_inputs proof)
in
assert v ;
print_info name zero_knowledge proof pp_prover pp_verifier ;
match Main.Internal_for_tests.mutate_vi verifier_inputs with
| None -> ()
| Some verifier_inputs ->
let v = Main.verify pp_verifier ~inputs:verifier_inputs proof in
assert (not v))
| _ -> (
try
let proof = Main.prove pp_prover ~inputs:prover_inputs in
assert (not (Main.verify pp_verifier ~inputs:verifier_inputs proof))
with
| Main.Rest_not_null _ ->
if outcome = Proof_error then ()
else raise (Invalid_argument "Proving error: incorrect witness")
| Main.Entry_not_in_table _ ->
if outcome = Lookup_error then ()
else raise (Invalid_argument "Proving error: incorrect lookup")
| e -> raise e)
let test_circuit ~name ?zero_knowledge ?outcome ?verbose circuit
private_inputs =
let circuit_map = Plonk.SMap.singleton name (circuit, 1) in
let inputs = Plonk.SMap.singleton name [private_inputs] in
test_circuits ~name ?zero_knowledge ?outcome ?verbose circuit_map inputs
let run_test_case ~zero_knowledge ?verbose
Cases.{name; circuit; witness; outcome} () =
test_circuit ~name ~zero_knowledge ~outcome ?verbose circuit witness
let test_aggregated_cases ?(prefix = "") cases =
let name, circuits_map, inputs_map, outcome =
Cases.aggregate_cases ~prefix cases
in
( name,
fun ~zero_knowledge () ->
test_circuits ~name ~zero_knowledge circuits_map inputs_map ~outcome )
end
module Plompiler_Helpers = struct
open Plompiler
module CS = Plonk.Circuit
type test_info = {valid : bool; name : string; flamegraph : bool}
module type Test = functor (L : LIB) -> sig
open L
val tests : ((unit -> unit repr t) * test_info) list
end
let to_test ?plonk ?(optimize = true) test () =
let module Test = (val test : Test) in
let circuits =
let module E1 = Test (LibCircuit) in
E1.tests
in
let results =
let module E2 = Test (LibResult) in
E2.tests
in
let run_one_test (circuit, info) (result, _) =
let LibCircuit.{cs; tables; solver; _} =
LibCircuit.(get_cs (circuit ()))
in
let initial, public_input_size = LibCircuit.(get_inputs (circuit ())) in
if info.flamegraph then
Plompiler.Utils.dump_label_traces (info.name ^ "_flamegraph") cs ;
let pi =
try Solver.solve solver initial |> fun x -> Some x with _ -> None
in
match pi with
| None -> assert (not info.valid)
| Some private_inputs ->
if not info.valid then assert (not @@ CS.sat cs tables private_inputs)
else (
Printf.fprintf
!output_buffer
"%s:\nConstraints: %d\n\n"
info.name
Array.(concat cs |> length) ;
assert (CS.sat cs tables private_inputs) ;
let cs, private_inputs =
if optimize then (
let LibCircuit.{cs; solver; _} =
LibCircuit.(get_cs ~optimize (circuit ()))
in
Printf.fprintf
!output_buffer
"%s_optimized:\nConstraints: %d\n\n"
info.name
Array.(concat cs |> length) ;
let private_inputs = Solver.solve solver initial in
assert (CS.sat cs tables private_inputs) ;
(cs, private_inputs))
else (cs, private_inputs)
in
if info.flamegraph then
Plompiler.Utils.dump_label_traces
(info.name ^ "_opt_flamegraph")
cs ;
let res = LibResult.get_result (result ()) in
let serialized_res = LibResult.serialize res in
let out_size = Array.length serialized_res in
let trace_out =
Array.sub
private_inputs
(Array.length private_inputs - out_size)
out_size
in
assert (Array.for_all2 S.( = ) serialized_res trace_out) ;
match plonk with
| None -> ()
| Some plonk ->
let module Main = (val plonk : Plonk.Main_protocol.S) in
let open Make (Main) in
let circuit = CS.to_plonk ~public_input_size ~tables cs in
test_circuit
~name:info.name
~zero_knowledge:false
~outcome:Valid
circuit
private_inputs)
in
List.iter2 run_one_test circuits results
module Utils (L : LIB) = struct
open L
let test_equal x z () =
let* x = input ~kind:`Public x in
let* z = input z in
assert_equal x z
let si x = Input.scalar @@ S.of_string @@ string_of_int x
let test ~valid ?(name = "test") ?(flamegraph = false) x =
(x, {valid; name; flamegraph})
end
end
include Plompiler_Helpers