Source file owl_base_linalg_generic.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# 1 "src/base/linalg/owl_base_linalg_generic.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2020 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)

type ('a, 'b) t = ('a, 'b) Owl_base_dense_ndarray_generic.t

module M = Owl_base_dense_ndarray_generic

(* Check matrix properties *)

let is_triu x =
  let shp = M.shape x in
  let m, n = shp.(0), shp.(1) in
  let k = Stdlib.min m n in
  let _a0 = Owl_const.zero (M.kind x) in
  try
    for i = 0 to k - 1 do
      for j = 0 to i - 1 do
        assert (M.get x [| i; j |] = _a0)
      done
    done;
    true
  with
  | _exn -> false


let is_tril x =
  let shp = M.shape x in
  let m, n = shp.(0), shp.(1) in
  let k = Stdlib.min m n in
  let _a0 = Owl_const.zero (M.kind x) in
  try
    for i = 0 to k - 1 do
      for j = i + 1 to k - 1 do
        assert (M.get x [| i; j |] = _a0)
      done
    done;
    true
  with
  | _exn -> false


let is_symmetric x =
  let shp = M.shape x in
  let m, n = shp.(0), shp.(1) in
  if m <> n
  then false
  else (
    try
      for i = 0 to n - 1 do
        for j = i + 1 to n - 1 do
          let a = M.get x [| j; i |] in
          let b = M.get x [| i; j |] in
          assert (a = b)
        done
      done;
      true
    with
    | _exn -> false)


let is_hermitian x =
  let shp = M.shape x in
  let m, n = shp.(0), shp.(1) in
  if m <> n
  then false
  else (
    try
      for i = 0 to n - 1 do
        for j = i to n - 1 do
          let a = M.get x [| j; i |] in
          let b = Complex.conj (M.get x [| i; j |]) in
          assert (a = b)
        done
      done;
      true
    with
    | _exn -> false)


let is_diag x = is_triu x && is_tril x

let _check_is_matrix dims =
  if Array.length dims <> 2
  then raise (Invalid_argument "The given NDarray is not a matrix!")
  else ()


(* ======= WARNING: the linalg functions below are experimental. ======= *)
(* ========= Corner cases etc. are not sufficiently tested. ============ *)

(* Linear equation solution by Gauss-Jordan elimination.
 * Input matrix: a[n][n], b[n][m];
 * Output: ``ainv``, inversed matrix of a; ``x``, so that ax = b.
 * TODO: Extend to multiple types: double, complex; unify with existing owl
 * structures e.g. naming.
 * Test: https://github.com/scipy/scipy/blob/master/scipy/linalg/tests/test_basic.py#L496 *)
let linsolve_gauss a b =
  let dims_a, dims_b = M.shape a, M.shape b in
  let _, _ = _check_is_matrix dims_a, _check_is_matrix dims_b in
  let a = M.copy a in
  let b = M.copy b in
  let n = dims_a.(0) in
  let m = dims_b.(1) in
  let icol = ref 0 in
  let irow = ref 0 in
  let dum = ref 0.0 in
  let pivinv = ref 0.0 in
  let indxc = Array.make n 0 in
  let indxr = Array.make n 0 in
  let ipiv = Array.make n 0 in
  (* Main loop over the columns to be reduced. *)
  for i = 0 to n - 1 do
    let big = ref 0.0 in
    (* Outer loop of the search for at pivot element *)
    for j = 0 to n - 1 do
      if ipiv.(j) <> 1
      then
        for k = 0 to n - 1 do
          if ipiv.(k) == 0
          then (
            let v = M.get a [| j; k |] |> abs_float in
            if v >= !big
            then (
              big := v;
              irow := j;
              icol := k))
        done
    done;
    ipiv.(!icol) <- ipiv.(!icol) + 1;
    if !irow <> !icol
    then (
      for l = 0 to n - 1 do
        let u = M.get a [| !irow; l |] in
        let v = M.get a [| !icol; l |] in
        M.set a [| !icol; l |] u;
        M.set a [| !irow; l |] v
      done;
      for l = 0 to m - 1 do
        let u = M.get b [| !irow; l |] in
        let v = M.get b [| !icol; l |] in
        M.set b [| !icol; l |] u;
        M.set b [| !irow; l |] v
      done);
    indxr.(i) <- !irow;
    indxc.(i) <- !icol;
    let p = M.get a [| !icol; !icol |] in
    if p = 0.0 then raise Owl_exception.SINGULAR;
    pivinv := 1.0 /. p;
    M.set a [| !icol; !icol |] 1.0;
    for l = 0 to n - 1 do
      let prev = M.get a [| !icol; l |] in
      M.set a [| !icol; l |] (prev *. !pivinv)
    done;
    for l = 0 to m - 1 do
      let prev = M.get b [| !icol; l |] in
      M.set b [| !icol; l |] (prev *. !pivinv)
    done;
    for ll = 0 to n - 1 do
      if ll <> !icol
      then (
        dum := M.get a [| ll; !icol |];
        M.set a [| ll; !icol |] 0.0;
        for l = 0 to n - 1 do
          let p = M.get a [| !icol; l |] in
          let prev = M.get a [| ll; l |] in
          M.set a [| ll; l |] (prev -. (p *. !dum))
        done;
        for l = 0 to m - 1 do
          let p = M.get b [| !icol; l |] in
          let prev = M.get b [| ll; l |] in
          M.set b [| ll; l |] (prev -. (p *. !dum))
        done)
    done
  done;
  for l = n - 1 downto 0 do
    if indxr.(l) <> indxc.(l)
    then
      for k = 0 to n - 1 do
        let u = M.get a [| k; indxr.(l) |] in
        let v = M.get a [| k; indxc.(l) |] in
        M.set a [| k; indxc.(l) |] u;
        M.set a [| k; indxr.(l) |] v
      done
  done;
  a, b


(* LU decomposition.
 * Input matrix: a[n][n]; return L/U in one matrix, and the row permutation vector.
 * Test: https://github.com/scipy/scipy/blob/master/scipy/linalg/tests/test_decomp.py
 *)
let _lu_base a =
  let k = M.kind a in
  let _abs = Owl_base_dense_common._abs_elt k in
  let _mul = Owl_base_dense_common._mul_elt k in
  let _div = Owl_base_dense_common._div_elt k in
  let _sub = Owl_base_dense_common._sub_elt k in
  let _flt = Owl_base_dense_common._float_typ_elt k in
  let _zero = Owl_const.zero k in
  let _one = Owl_const.one k in
  let lu = M.copy a in
  let n = (M.shape a).(0) in
  let m = (M.shape a).(1) in
  assert (n = m);
  let indx = Array.make n 0 in
  (* implicit scaling of each row *)
  let vv = Array.make n _zero in
  let tiny = _flt 1.0e-40 in
  let big = ref _zero in
  let temp = ref _zero in
  (* flag of row exchange *)
  let d = ref 1.0 in
  let imax = ref 0 in
  (* loop over rows to get the implicit scaling information *)
  for i = 0 to n - 1 do
    big := _zero;
    for j = 0 to n - 1 do
      temp := M.get lu [| i; j |] |> _abs;
      if !temp > !big then big := !temp
    done;
    if !big = _zero then raise Owl_exception.SINGULAR;
    vv.(i) <- _div _one !big
  done;
  for k = 0 to n - 1 do
    big := _zero;
    (* choose suitable pivot *)
    for i = k to n - 1 do
      temp := _mul (M.get lu [| i; k |] |> _abs) vv.(i);
      if !temp > !big
      then (
        big := !temp;
        imax := i)
    done;
    (* interchange rows *)
    if k <> !imax
    then (
      for j = 0 to n - 1 do
        temp := M.get lu [| !imax; j |];
        let tmp = M.get lu [| k; j |] in
        M.set lu [| !imax; j |] tmp;
        M.set lu [| k; j |] !temp
      done;
      d := !d *. -1.;
      vv.(!imax) <- vv.(k));
    indx.(k) <- !imax;
    if M.get lu [| k; k |] = _zero then M.set lu [| k; k |] tiny;
    for i = k + 1 to n - 1 do
      let tmp0 = M.get lu [| i; k |] in
      let tmp1 = M.get lu [| k; k |] in
      temp := _div tmp0 tmp1;
      M.set lu [| i; k |] !temp;
      for j = k + 1 to n - 1 do
        let prev = M.get lu [| i; j |] in
        M.set lu [| i; j |] (_sub prev (_mul !temp (M.get lu [| k; j |])))
      done
    done
  done;
  lu, indx, !d


(* LU decomposition, return L, U, and permutation vector *)
let lu a =
  let k = M.kind a in
  let _zero = Owl_const.zero k in
  let lu, indx, _ = _lu_base a in
  let n = (M.shape lu).(0) in
  let m = (M.shape lu).(1) in
  assert (n = m && n >= 2);
  let l = M.eye k n in
  for r = 1 to n - 1 do
    for c = 0 to r - 1 do
      let v = M.get lu [| r; c |] in
      M.set l [| r; c |] v;
      M.set lu [| r; c |] _zero
    done
  done;
  l, lu, indx


let _lu_solve_vec a b =
  let _k = M.kind a in
  let _mul = Owl_base_dense_common._mul_elt _k in
  let _div = Owl_base_dense_common._div_elt _k in
  let _sub = Owl_base_dense_common._sub_elt _k in
  let _zero = Owl_const.zero _k in
  assert (Array.length (M.shape b) = 1);
  let n = (M.shape a).(0) in
  if (M.shape b).(0) <> n then failwith "LUdcmp::solve bad sizes";
  let ii = ref 0 in
  let sum = ref _zero in
  let x = M.copy b in
  let lu, indx, _ = _lu_base a in
  for i = 0 to n - 1 do
    let ip = indx.(i) in
    sum := M.get x [| ip |];
    M.set x [| ip |] (M.get x [| i |]);
    if !ii <> 0
    then
      for j = !ii - 1 to i - 1 do
        sum := _sub !sum (_mul (M.get lu [| i; j |]) (M.get x [| j |]))
      done
    else if !sum <> _zero
    then ii := !ii + 1;
    M.set x [| i |] !sum
  done;
  for i = n - 1 downto 0 do
    sum := M.get x [| i |];
    for j = i + 1 to n - 1 do
      sum := _sub !sum (_mul (M.get lu [| i; j |]) (M.get x [| j |]))
    done;
    M.set x [| i |] (_div !sum (M.get lu [| i; i |]))
  done;
  x


(* Linear equation solution by LU decomposition.
 * Input matrix: a[n][n], b[n][m];
 * Output: ``x``, so that ax = b. *)
let linsolve_lu a b =
  let dims_a, dims_b = M.shape a, M.shape b in
  let _, _ = _check_is_matrix dims_a, _check_is_matrix dims_b in
  assert (dims_a.(0) = dims_a.(1));
  let m = dims_b.(1) in
  let b = M.copy b in
  for j = 0 to m - 1 do
    let vec = M.get_slice [ []; [ j ] ] b |> M.flatten in
    let x = _lu_solve_vec a vec in
    M.set_slice [ []; [ j ] ] b x
  done;
  b


(* Determinant of matrix a *)
let det a =
  let k = M.kind a in
  let _mul = Owl_base_dense_common._mul_elt k in
  let _flt = Owl_base_dense_common._float_typ_elt k in
  let dims_a = M.shape a in
  _check_is_matrix dims_a |> ignore;
  assert (dims_a.(0) = dims_a.(1));
  let n = dims_a.(0) in
  let lu, _, sign = _lu_base a in
  let big = ref (_flt sign) in
  for i = 0 to n - 1 do
    big := _mul !big (M.get lu [| i; i |])
  done;
  !big


(* Solver for tridiagonal matrix
 * Input: a[n], b[n], c[n], which together consist the tridiagonal matrix A, and the right side vector r[n]. Return: x[n].
 *)

let tridiag_solve_vec a b c r =
  let n = Array.length a in
  let n1 = Array.length b in
  let n2 = Array.length c in
  assert (n = n1 && n = n2);
  if b.(0) = 0.
  then raise (Invalid_argument "tridiag_solve_vec: 0 at the beginning of diagonal vector");
  let bet = ref b.(0) in
  let gam = Array.make n 0. in
  let x = Array.make n 0. in
  x.(0) <- r.(0) /. !bet;
  for j = 1 to n - 1 do
    gam.(j) <- c.(j - 1) /. !bet;
    bet := b.(j) -. (a.(j) *. gam.(j));
    if !bet = 0. then raise (Invalid_argument "tridiag_solve_vec: algorithm fails");
    x.(j) <- (r.(j) -. (a.(j) *. x.(j - 1))) /. !bet
  done;
  for j = n - 2 downto 0 do
    x.(j) <- x.(j) -. (gam.(j + 1) *. x.(j + 1))
  done;
  x


(* TODO: optimise and test  *)
(* Implementing the following algorithm:
 http://www.irma-international.org/viewtitle/41011/ *)
let inv varr =
  let _k = M.kind varr in
  let _add = Owl_base_dense_common._add_elt _k in
  let _mul = Owl_base_dense_common._mul_elt _k in
  let _div = Owl_base_dense_common._div_elt _k in
  let _neg = Owl_base_dense_common._neg_elt _k in
  let _zero = Owl_const.zero _k in
  let _one = Owl_const.one _k in
  let dims = M.shape varr in
  let _ = _check_is_matrix dims in
  let n = Array.unsafe_get dims 0 in
  if Array.unsafe_get dims 1 != n
  then failwith "no inverse - the matrix is not square"
  else (
    let pivot_row = Array.make n _zero in
    let result_varr = M.copy varr in
    for p = 0 to n - 1 do
      let pivot_elem = M.get result_varr [| p; p |] in
      if M.get result_varr [| p; p |] = _zero
      then failwith "the matrix does not have an inverse";
      (* update elements of the pivot row, save old vals *)
      for j = 0 to n - 1 do
        pivot_row.(j) <- M.get result_varr [| p; j |];
        if j != p then M.set result_varr [| p; j |] (_div pivot_row.(j) pivot_elem)
      done;
      (* update elements of the pivot col *)
      for i = 0 to n - 1 do
        if i != p
        then
          M.set
            result_varr
            [| i; p |]
            (_div (M.get result_varr [| i; p |]) (_neg pivot_elem))
      done;
      (* update the rest of the matrix *)
      for i = 0 to n - 1 do
        let pivot_col_elem = M.get result_varr [| i; p |] in
        for j = 0 to n - 1 do
          if i != p && j != p
          then (
            let pivot_row_elem = pivot_row.(j) in
            (* use old value *)
            let old_val = M.get result_varr [| i; j |] in
            let new_val = _add old_val (_mul pivot_row_elem pivot_col_elem) in
            M.set result_varr [| i; j |] new_val)
        done
      done;
      (* update the pivot element *)
      M.set result_varr [| p; p |] (_div _one pivot_elem)
    done;
    result_varr)


let logdet _x =
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.logdet")


let qr ?(thin = true) ?(pivot = false) _x =
  ignore thin;
  ignore pivot;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.qr")


let lq ?(thin = true) _x =
  ignore thin;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.lq")


let chol ?(upper = true) _x =
  upper |> ignore;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.chol")


let svd ?(thin = true) _x =
  thin |> ignore;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.svd")


let sylvester _a _b _c =
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.sylvester")


let lyapunov _a _q =
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.lyapunov")


let discrete_lyapunov ?(solver = `default) _a _q =
  solver |> ignore;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.discrete_lyapunov")


let linsolve ?(trans = false) ?(typ = `n) _a _b =
  trans |> ignore;
  typ |> ignore;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.linsolve")


let care ?(diag_r = false) _a _b _q _r =
  diag_r |> ignore;
  raise (Owl_exception.NOT_IMPLEMENTED "owl_base_dense_ndarray_generic.care")

(* ends here *)