Source file owl_maths_quadrature.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# 1 "src/base/maths/owl_maths_quadrature.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2020 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)

(** Numerical Integration *)

let trapzd f a b n =
  let error () =
    let s =
      Printf.sprintf
        "trapzd requires n > 0 and a <= b whereas n = %i, a = %g, b = %g"
        n
        a
        b
    in
    Owl_exception.INVALID_ARGUMENT s
  in
  Owl_exception.verify (n > 0 && a <= b) error;
  if n = 1
  then 0.5 *. (b -. a) *. (f a +. f b)
  else (
    let m = 2. ** float_of_int (n - 1) in
    let d = (b -. a) /. m in
    let x = ref (a +. (0.5 *. d)) in
    let s = ref 0. in
    for _i = 1 to int_of_float m do
      x := !x +. d;
      s := !s +. f !x
    done;
    (0.5 *. d *. (f a +. f b)) +. (!s *. d))


let trapz ?(n = 20) ?(eps = 1e-6) f a b =
  let s_new = ref 0. in
  let s_old = ref 0. in
  (try
     for i = 1 to n do
       s_new := trapzd f a b i;
       if i > 5
       then (
         let d = abs_float (!s_new -. !s_old) in
         let e = eps *. abs_float !s_old in
         assert (not (d < e || (!s_new = 0. && !s_old = 0.)));
         s_old := !s_new)
     done
   with
  | _ -> ());
  !s_new


let simpson ?(n = 20) ?(eps = 1e-6) f a b =
  let s_new = ref 0. in
  let s_old = ref 0. in
  let o_new = ref 0. in
  let o_old = ref 0. in
  (try
     for i = 1 to n do
       s_new := trapzd f a b i;
       s_old := ((4. *. !s_new) -. !o_new) /. 3.;
       if i > 5
       then (
         let d = abs_float (!s_old -. !o_old) in
         let e = eps *. abs_float !o_old in
         assert (not (d < e || (!s_old = 0. && !o_old = 0.)));
         o_old := !s_old;
         o_new := !s_new)
     done
   with
  | _ -> ());
  !s_new


let romberg ?(n = 20) ?(eps = 1e-6) f a b =
  let s = Array.make (n + 1) 0. in
  let h = Array.make (n + 2) 1. in
  let rss = ref 0. in
  let k = 5 in
  (try
     for i = 0 to n - 1 do
       s.(i) <- trapzd f a b (i + 1);
       if i >= k
       then (
         let s' = Array.sub s (i - k) k in
         let h' = Array.sub h (i - k) k in
         let ss, dss = Owl_maths_interpolate.polint h' s' 0. in
         rss := ss;
         assert (abs_float dss > eps *. abs_float ss));
       h.(i + 1) <- 0.25 *. h.(i)
     done
   with
  | _ -> ());
  !rss


(* Compute abscissas and weights *)

let gauss_legendre ?(eps = 3e-11) ?(a = -1.) ?(b = 1.) n =
  let m = (n + 1) / 2 in
  let n' = float_of_int n in
  let x = Array.create_float n in
  let w = Array.create_float n in
  let xm = 0.5 *. (b +. a) in
  let xl = 0.5 *. (b -. a) in
  let p1 = ref infinity in
  let p2 = ref infinity in
  let p3 = ref infinity in
  let pp = ref infinity in
  let z = ref infinity in
  for i = 1 to m do
    let i' = float_of_int i in
    z := cos (Owl_const.pi *. (i' -. 0.25) /. (n' +. 0.5));
    (try
       while true do
         p1 := 1.;
         p2 := 0.;
         for j = 1 to n do
           p3 := !p2;
           p2 := !p1;
           let j' = float_of_int j in
           p1 := ((((2. *. j') -. 1.) *. !z *. !p2) -. ((j' -. 1.) *. !p3)) /. j'
         done;
         pp := n' *. ((!z *. !p1) -. !p2) /. ((!z *. !z) -. 1.);
         let z1 = !z in
         z := z1 -. (!p1 /. !pp);
         assert (abs_float (!z -. z1) > eps)
       done
     with
    | _ -> ());
    x.(i - 1) <- xm -. (xl *. !z);
    x.(n - i) <- xm +. (xl *. !z);
    w.(i - 1) <- 2. *. xl /. ((1. -. (!z *. !z)) *. !pp *. !pp);
    w.(n - i) <- w.(i - 1)
  done;
  x, w


let gauss_legendre_cache = Array.init 50 gauss_legendre

let _gauss_laguerre ?(_eps = 3e-11) _a _b _n = ()

let gaussian_fixed ?(n = 10) f a b =
  let x, w =
    match n < Array.length gauss_legendre_cache with
    | true  -> gauss_legendre_cache.(n)
    | false -> gauss_legendre n
  in
  let xr = 0.5 *. (b -. a) in
  let s = ref 0. in
  for i = 0 to n - 1 do
    let c = (xr *. (x.(i) +. 1.)) +. a in
    s := !s +. (w.(i) *. f c)
  done;
  !s *. xr


let gaussian ?(n = 50) ?(eps = 1e-6) f a b =
  let s_new = ref infinity in
  let s_old = ref infinity in
  (try
     for i = 1 to n do
       s_new := gaussian_fixed ~n:i f a b;
       assert (abs_float (!s_new -. !s_old) > eps);
       s_old := !s_new
     done
   with
  | _ -> ());
  !s_new

(* ends here *)