Source file owl_nlp_lda0.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# 1 "src/owl/nlp/owl_nlp_lda0.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2017
 *   Ben Catterall <bpwc2@cam.ac.uk>
 *   Liang Wang <liang.wang@cl.cam.ac.uk>
 *)

(** NLP: LDA module *)

open Bigarray

module MS = Owl_sparse.Dok_matrix
module MD = Owl_dense.Matrix.D

type lda_typ = SimpleLDA | FTreeLDA | LightLDA | SparseLDA
type dsmat = (float, float64_elt) Owl_dense_matrix_generic.t
type spmat = (float, float64_elt) Owl_sparse_dok_matrix.t

type model = {
  mutable n_d : int;                      (* number of documents *)
  mutable n_k : int;                      (* number of topics *)
  mutable n_v : int;                      (* number of vocabulary *)

  mutable alpha   : float;                (* model hyper-parameters *)
  mutable beta    : float;                (* model hyper-parameters *)
  mutable alpha_k : float;                (* model hyper-parameters *)
  mutable beta_v  : float;                (* model hyper-parameters *)

  mutable t_dk : dsmat;                   (* document-topic table: num of tokens assigned to each topic in each doc *)
  mutable t_wk : spmat;                   (* word-topic table: num of tokens assigned to each topic for each word *)
  mutable t__k : dsmat;                   (* number of tokens assigned to a topic: k = sum_w t_wk = sum_d t_dk *)
  mutable t__z : int array array;         (* table of topic assignment of each token in each document *)

  mutable iter : int;                     (* number of iterations *)
  mutable data : int array array;         (* training data, tokenised *)
  mutable vocb : (string, int) Hashtbl.t; (* vocabulary, or dictionary if you prefer *)
}

let include_token m w d k =
  MD.(set m.t__k 0 k (get m.t__k 0 k +. 1.));
  MS.(set m.t_wk w k (get m.t_wk w k +. 1.));
  MD.(set m.t_dk d k (get m.t_dk d k +. 1.))

let exclude_token m w d k =
  MD.(set m.t__k 0 k (get m.t__k 0 k -. 1.));
  MS.(set m.t_wk w k (get m.t_wk w k -. 1.));
  MD.(set m.t_dk d k (get m.t_dk d k -. 1.))

let likelihood m =
  let _sum = ref 0. in
  let n_token = ref 0 in
  (* every document *)
  for i = 0 to m.n_d - 1 do
    let dlen = Array.length m.t__z.(i) in
    n_token := !n_token + dlen;
    let dsum = ref 0. in
    (* every token *)
    for j = 0 to dlen - 1 do
      let wsum = ref 0. in
      let w = m.data.(i).(j) in
      (* every topic *)
      for k = 0 to m.n_k - 1 do
        wsum := !wsum +. (MD.get m.t_dk i k +. m.alpha_k) *. (MS.get m.t_wk w k +. m.beta) /. (MD.get m.t__k 0 k +. m.beta_v);
      done;
      dsum := !dsum +. (Owl_maths.log2 !wsum);
    done;
    let dlen = float_of_int dlen in
    _sum := !_sum +. !dsum -. dlen *. (Owl_maths.log2 dlen);
  done;
  !_sum /. (float_of_int !n_token)

let show_info m i t =
  let s = match i mod 1 = 0 with
    | true  -> Printf.sprintf "likelihood:%.3f" (likelihood m)
    | false -> ""
  in
  Owl_log.info "iter#%i t(s):%.1f t_dk:%.3f t_wk:%.3f %s" i t (MD.density m.t_dk) (MS.density m.t_wk) s


(* implement several LDA with specific samplings *)

module SimpleLDA = struct

  let init _m = ()

  let sampling m d =
    let p = MD.zeros 1 m.n_k in
    Array.iteri (fun i w ->
      let k = m.t__z.(d).(i) in
      exclude_token m w d k;
      (* make cdf function *)
      let x = ref 0. in
      for j = 0 to m.n_k - 1 do
        x := !x +. (MD.get m.t_dk d j +. m.alpha_k) *. (MS.get m.t_wk w j +. m.beta) /. (MD.get m.t__k 0 j +. m.beta_v);
        MD.set p 0 j !x;
      done;
      (* draw a sample *)
      let u = Owl_stats.std_uniform_rvs () *. !x in
      let k = ref 0 in
      while (MD.get p 0 !k) < u do k := !k + 1 done;
      include_token m w d !k;
      m.t__z.(d).(i) <- !k;
    ) m.data.(d)

end


module SparseLDA = struct

  let s = ref 0.    (* Cache of s *)
  let q = ref [| |] (* Cache of q *)
  let r_non_zero :  (int, float) Hashtbl.t ref = ref (Hashtbl.create 1) (*  *)
  let q_non_zero :  (int, bool) Hashtbl.t ref = ref (Hashtbl.create 1)  (*  *)

  let exclude_token_sparse m w d k ~s ~r ~q =
    let t__klocal = ref ((MD.get m.t__k 0 k) )in
    (* Reduce s, r  l *)
    s := !s -. (m.beta *. m.alpha_k) /. (!t__klocal +. m.beta_v);
    r := !r -. (m.beta *. (MD.get m.t_dk d k)) /. (m.beta_v +. !t__klocal);
    exclude_token m w d k;
    (* add back in  s,r *)
    t__klocal :=  (MD.get m.t__k 0 k);
    Array.set !q k ((m.alpha_k +. (MD.get m.t_dk d k)) /. (m.beta_v +. !t__klocal));
    let r_local = (MD.get m.t_dk d k) in
    (match r_local with
    | 0. ->  Hashtbl.remove !r_non_zero k
    | _  -> (Hashtbl.replace !r_non_zero k r_local;
      r := !r +. (m.beta *. r_local) /. (m.beta_v +. !t__klocal)
    ));
    s := !s +. (m.beta *. m.alpha_k) /. (!t__klocal +. m.beta_v)

  let include_token_sparse m w d k ~s ~r ~q =
    let t__klocal = ref (MD.get m.t__k 0 k) in
    (* Reduce s, r  l *)
    s := !s -. (m.beta *. m.alpha_k)/.( !t__klocal +. m.beta_v);
    r := !r -. (m.beta *. (MD.get m.t_dk d k)) /. (m.beta_v +. !t__klocal);
    include_token m w d k;
    (* add back in s, r *)
    t__klocal :=  (MD.get m.t__k 0 k);
    s := !s +. (m.beta *. m.alpha_k)/.(!t__klocal +. m.beta_v);
    let r_local = (MD.get m.t_dk d k) in
    (match r_local with
    | 0. ->  Hashtbl.remove !r_non_zero k
    | _  -> (Hashtbl.replace !r_non_zero k r_local;
            r := !r +. (m.beta *. r_local) /. (m.beta_v +. !t__klocal))
    );
    Array.set !q k ((m.alpha_k +. (MD.get m.t_dk d k)) /. (m.beta_v +. !t__klocal))

  let init m =
    (* reset module parameters, maybe wrap into model? *)
    s := 0.;
    q := [| |];
    Hashtbl.reset !r_non_zero;
    Hashtbl.reset !q_non_zero;
    (* s is independent of document *)
    let k = ref 0 in
    while !k < m.n_k do
      let t__klocal = (MD.get m.t__k 0 !k) in
      s := !s +. (1. /. (m.beta_v +. t__klocal));
      k := !k + 1;
    done;
    q := (Array.make (m.n_k) 0.);
    r_non_zero := (Hashtbl.create m.n_k);
    q_non_zero := (Hashtbl.create m.n_k);
    s := !s *. (m.alpha_k *. m.beta)

  let sampling m d =
    let k = ref 0 in
    let r = ref 0. in (* Cache of r *)
    (* Calculate r *)
    Hashtbl.clear !r_non_zero;
    while !k < m.n_k do
      let t__klocal = (MD.get m.t__k 0 !k) in
      let r_local = (MD.get m.t_dk d !k) in
      (* Sparse representation of r *)
      if r_local != 0. then (
        let r_val = r_local /. (m.beta_v +.  t__klocal) in
        r := !r +. r_val;
        Hashtbl.add !r_non_zero !k r_val;
      );
      (* Build up our q cache *)
      (* TODO: efficiently handle t_dk = 0 *)
      Array.set !q !k ((m.alpha_k +. (MD.get m.t_dk d !k)) /. (m.beta_v +. t__klocal));
      k := !k + 1;
    done;
    r := !r *. m.beta;

    (* Process the document *)
    Array.iteri (fun i w ->
        let k = m.t__z.(d).(i) in
        exclude_token_sparse m w d k ~s ~r ~q;
        (* Calculate q *)
        let qsum = ref 0. in
        let k_q = ref 0 in
        Hashtbl.clear !q_non_zero;
        (* This bit makes it (K) rather than O(K_d + K_w) *)
        while !k_q < m.n_k do
          let q_local  =  (MS.get m.t_wk w !k_q) in
          if q_local != 0. then (
            qsum := !qsum +. (Array.get !q !k_q) *. q_local;
            Hashtbl.add !q_non_zero !k_q true;
          );
          k_q := !k_q + 1;
        done;
        k_q := 0;
        let u = ref (Owl_stats.std_uniform_rvs () *. (!s +. !r +. !qsum)) in
        let k = ref 0 in
        (* Work out which factor to sample from *)
        if !u < !s then (
          (* sum up *)
          u := !u /. (m.alpha_k *. m.beta); (* Don't need this *)
          let slocal = ref 0. in
          while !slocal < !u do
            slocal := !slocal +. (1. /. (m.beta_v +. (MD.get m.t__k 0 !k_q) ));
            k_q := !k_q + 1;
          done;
          (* Found our topic (we went past it by one) *)
          k := !k_q - 1;
        )
        else if !u < (!s +. !r) then (
          (* Iterate over set of non-zero r *)
          u := (!u -. !s) /. m.beta; (* compare just to r and don't need !beta *)
          let rlocal = ref 0. in
          (* TODO: pick largest (order by decreasing) for efficiency *)
          Hashtbl.iter (fun key data -> if !rlocal < !u then (
                    rlocal := !rlocal +. (data) /. (m.beta_v +. (MD.get m.t__k 0 key) );
                    k := key)
              ) !r_non_zero
        )
        else (
          u := !u -. (!s +. !r);
          let qlocal = ref 0. in
          (* Iterate over set of non-zero q *)
          (* TODO: make descending *)
          Hashtbl.iter (fun key _ -> if !qlocal < !u then (
                    qlocal := !qlocal +. (Array.get !q key) *. (MS.get m.t_wk w key);
                    k := key)
              ) !q_non_zero
        );
        include_token_sparse m w d !k ~s ~r ~q;
        m.t__z.(d).(i) <- !k;
      ) m.data.(d)
end


module FTreeLDA = struct

  let init _m = ()

  let sampling _m _d = ()

end


module LightLDA = struct

  let init _m = ()

  let sampling _m _d = ()

end


(* init the model based on: topics, vocabulary, tokens *)
let init ?(iter=100) k v d =
  Owl_log.info "init the model";
  (* set basic model stats *)
  let n_d = Array.length d in
  let n_v = Hashtbl.length v in
  let n_k = k in
  (* set model hyper-parameters *)
  let alpha = 50. in
  let beta = 0.1 in
  let alpha_k = alpha /. (float_of_int n_k) in
  let beta_v = (float_of_int n_v) *. beta in
  (* init model parameters *)
  let t_dk = MD.zeros n_d n_k in
  let t_wk = MS.zeros float64 n_v n_k in
  let t__k = MD.zeros 1 n_k in
  (* set document data and vocabulary *)
  let data = d in
  let vocb = v in
  (* init a partial model *)
  let m = {
    n_d;
    n_k;
    n_v;
    alpha;
    beta;
    alpha_k;
    beta_v;
    t_dk;
    t_wk;
    t__k;
    t__z = [||];
    iter;
    data;
    vocb;
  }
  in
  (* randomise the topic assignment for each token *)
  m.t__z <- Array.mapi (fun i s ->
    Array.init (Array.length s) (fun j ->
      let k' = Owl_stats.uniform_int_rvs ~a:0 ~b:(k - 1) in
      include_token m s.(j) i k';
      k'
    )
  ) d;
  m

(* general training function *)
let train typ m =
  let sampling = match typ with
    | SimpleLDA -> SimpleLDA.sampling
    | FTreeLDA  -> FTreeLDA.sampling
    | LightLDA  -> LightLDA.sampling
    | SparseLDA -> SparseLDA.sampling
  in
  let init = match typ with
    | SimpleLDA -> SimpleLDA.init
    | FTreeLDA  -> FTreeLDA.init
    | LightLDA  -> LightLDA.init
    | SparseLDA -> SparseLDA.init
  in
  init m;
  for i = 0 to m.iter - 1 do
    let t0 = Unix.gettimeofday () in
    for j = 0 to m.n_d - 1 do
      (* Owl_log.info "iteration #%i - doc#%i" i j; *)
      sampling m j
    done;
    let t1 = Unix.gettimeofday () in
    show_info m i (t1 -. t0);
  done