Source file owl_nlp_tfidf.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# 1 "src/owl/nlp/owl_nlp_tfidf.ml"
(** NLP: TFIDF module *)
type tf_typ =
| Binary
| Count
| Frequency
| Log_norm
type df_typ =
| Unary
| Idf
| Idf_Smooth
type t =
{ mutable uri : string
;
mutable tf_typ : tf_typ
;
mutable df_typ : df_typ
;
mutable offset : int array
;
mutable doc_freq : float array
;
mutable corpus : Owl_nlp_corpus.t
;
mutable handle : in_channel option
}
let term_freq = function
| Binary -> fun _tc _tn -> 1.
| Count -> fun tc _tn -> tc
| Frequency -> fun tc tn -> tc /. tn
| Log_norm -> fun tc _tn -> 1. +. log tc
let doc_freq = function
| Unary -> fun _dc _nd -> 1.
| Idf -> fun dc nd -> log (nd /. dc)
| Idf_Smooth -> fun dc nd -> log (nd /. (1. +. dc))
let tf_typ_string = function
| Binary -> "binary"
| Count -> "raw count"
| Frequency -> "frequency"
| Log_norm -> "log normalised count"
let df_typ_string = function
| Unary -> "unary"
| Idf -> "inverse frequency"
| Idf_Smooth -> "inverse frequency smooth"
let create tf_typ df_typ corpus =
let base_uri = Owl_nlp_corpus.get_uri corpus in
{ uri = base_uri ^ ".tfidf"
; tf_typ
; df_typ
; offset = [||]
; doc_freq = [||]
; corpus
; handle = None
}
let get_uri m = m.uri
let get_corpus m = m.corpus
let length m = Array.length m.offset - 1
let vocab_len m = m.corpus |> Owl_nlp_corpus.get_vocab |> Owl_nlp_vocabulary.length
let get_handle m =
match m.handle with
| Some x -> x
| None ->
let h = m |> get_uri |> open_in in
m.handle <- Some h;
h
let doc_count_of m w =
let v = Owl_nlp_corpus.get_vocab m.corpus in
let i = Owl_nlp_vocabulary.word2index v w in
m.doc_freq.(i)
let doc_count vocab fname =
let n_w = Owl_nlp_vocabulary.length vocab in
let d_f = Array.make n_w 0. in
let _h = Hashtbl.create 1024 in
let n_d = ref 0 in
Owl_io.iteri_lines_of_marshal
(fun i doc ->
Hashtbl.clear _h;
Array.iter
(fun w ->
match Hashtbl.mem _h w with
| true -> ()
| false -> Hashtbl.add _h w 0)
doc;
Hashtbl.iter (fun w _ -> d_f.(w) <- d_f.(w) +. 1.) _h;
n_d := i)
fname;
d_f, !n_d
let term_count _h doc =
Array.iter
(fun w ->
match Hashtbl.mem _h w with
| true ->
let a = Hashtbl.find _h w in
Hashtbl.replace _h w (a +. 1.)
| false -> Hashtbl.add _h w 1.)
doc
let normalise x =
let c = Array.fold_left (fun a (_w, b) -> a +. (b *. b)) 0. x |> sqrt in
Array.map (fun (w, b) -> w, b /. c) x
let _build_with norm sort tf_fun df_fun m =
let vocab = Owl_nlp_corpus.get_vocab m.corpus in
let tfile = Owl_nlp_corpus.get_tok_uri m.corpus in
let fname = m.uri in
Owl_log.info "calculate document frequency ...";
let d_f, _n_d = doc_count vocab tfile in
let n_d = Owl_nlp_corpus.length m.corpus |> float_of_int in
m.doc_freq <- d_f;
Owl_log.info "calculate tf-idf ...";
let fo = open_out fname in
Fun.protect
(fun () ->
let _h = Hashtbl.create 1024 in
let offset = Owl_utils.Stack.make () in
Owl_utils.Stack.push offset 0;
Owl_io.iteri_lines_of_marshal
(fun _i doc ->
term_count _h doc;
let tfs = Array.make (Hashtbl.length _h) (0, 0.) in
let tn = Array.length doc |> float_of_int in
let j = ref 0 in
Hashtbl.iter
(fun w tc ->
let tf_df = tf_fun tc tn *. df_fun d_f.(w) n_d in
tfs.(!j) <- w, tf_df;
j := !j + 1)
_h;
let tfs =
match norm with
| true -> normalise tfs
| false -> tfs
in
let _ =
match sort with
| true -> Array.sort (fun a b -> Stdlib.compare (fst a) (fst b)) tfs
| false -> ()
in
Marshal.to_channel fo tfs [];
Owl_utils.Stack.push offset (LargeFile.pos_out fo |> Int64.to_int);
Hashtbl.clear _h)
tfile;
m.offset <- offset |> Owl_utils.Stack.to_array)
~finally:(fun () -> close_out fo)
let build ?(norm = false) ?(sort = false) ?(tf = Count) ?(df = Idf) corpus =
let m = create tf df corpus in
let tf_fun = term_freq tf in
let df_fun = doc_freq df in
_build_with norm sort tf_fun df_fun m;
m
let next m : (int * float) array = m |> get_handle |> Marshal.from_channel
let next_batch ?(size = 100) m =
let batch = Owl_utils.Stack.make () in
(try
for _i = 0 to size - 1 do
m |> next |> Owl_utils.Stack.push batch
done
with
| _exn -> ());
Owl_utils.Stack.to_array batch
let iteri f m = Owl_io.iteri_lines_of_marshal f m.uri
let mapi f m = Owl_io.mapi_lines_of_marshal f m.uri
let get m i : (int * float) array =
let fh = open_in m.uri in
Fun.protect
(fun () ->
seek_in fh m.offset.(i);
let doc = Marshal.from_channel fh in
doc)
~finally:(fun () -> close_in fh)
let reset_iterators m =
let _reset_offset = function
| Some h -> seek_in h 0
| None -> ()
in
_reset_offset m.handle
let apply m doc =
let f t_f d_f n_d = t_f *. log (n_d /. (1. +. d_f)) in
let n_d = Owl_nlp_corpus.length m.corpus |> float_of_int in
let d_f = m.doc_freq in
let doc = Owl_nlp_corpus.tokenise m.corpus doc in
let _h = Hashtbl.create 1024 in
term_count _h doc;
let tfs = Array.make (Hashtbl.length _h) (0, 0.) in
let i = ref 0 in
Hashtbl.iter
(fun w t_f ->
tfs.(!i) <- w, f t_f d_f.(w) n_d;
i := !i + 1)
_h;
tfs
let save m f =
m.corpus <- Owl_nlp_corpus.reduce_model m.corpus;
m.handle <- None;
Owl_io.marshal_to_file m f
let load f : t = Owl_io.marshal_from_file f
let to_string m =
Printf.sprintf "TfIdf model\n"
^ Printf.sprintf " uri : %s\n" m.uri
^ Printf.sprintf " tf_type : %s\n" (m.tf_typ |> tf_typ_string)
^ Printf.sprintf " df_type : %s\n" (m.df_typ |> df_typ_string)
^ Printf.sprintf " # of docs : %i\n" (length m)
^ Printf.sprintf " # of vocab : %i" (vocab_len m)
^ ""
let print m = m |> to_string |> print_endline
let density m =
let n_d = length m |> float_of_int in
let n_t = vocab_len m |> float_of_int in
let nnz = ref 0 in
iteri (fun _ _ -> nnz := !nnz + 1) m;
float_of_int !nnz /. (n_d *. n_t)
let doc_to_vec k m x =
let v = Owl_dense.Ndarray.Generic.zeros k [| vocab_len m |] in
Array.iter (fun (i, a) -> Owl_dense.Ndarray.Generic.set v [| i |] a) x;
v
let all_pairwise_distance typ m x =
let dist_fun = Owl_nlp_similarity.distance typ in
let l = mapi (fun i y -> i, dist_fun x y) m in
Array.sort (fun a b -> Stdlib.compare (snd a) (snd b)) l;
l
let nearest ?(typ = Owl_nlp_similarity.Cosine) m x k =
let l = all_pairwise_distance typ m x in
Array.sub l 0 k