1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
open Printf
let eps = sqrt epsilon_float
exception Root of float
let max_float (a: float) (b: float) =
if a >= b then a
else b
let do_bisection improve f a b fa fb =
let a = ref a and b = ref b
and fa = ref fa and fb = ref fb in
try
while improve !a !b do
let m = !a +. 0.5 *. (!b -. !a) in
let fm = f m in
if fm = 0. then raise(Root m)
else if fm < 0. then (a := m; fa := fm)
else (b := m; fb := fm)
done;
!a +. 0.5 *. (!b -. !a)
with Root r -> r
let bisection_improve_default a b =
abs_float(a -. b) > eps *. max_float (abs_float a) (abs_float b)
let bisection_improve_eps eps a b =
abs_float(a -. b) > eps *. max_float (abs_float a) (abs_float b)
let bisection ?eps f a b =
let improve = match eps with
| None -> bisection_improve_default
| Some eps ->
if eps <= 0. then invalid_arg "Root1D.bisection: tol <= 0";
bisection_improve_eps eps in
let fa = f a
and fb = f b in
if fa = 0. then a
else if fa < 0. then
if fb = 0. then b
else if fb < 0. then
invalid_arg "Root1D.bisection: f(a) and f(b) are both < 0."
else
do_bisection improve f a b fa fb
else
if fb = 0. then b
else if fb > 0. then
invalid_arg "Root1D.bisection: f(a) and f(b) are both > 0."
else
do_bisection improve f b a fb fa
let newton_good x xpre fx = abs_float fx < eps
let newton ?(good_enough=newton_good) f_f' x0 =
let x = ref x0
and xpre = ref nan
and fx, f'x = f_f' x0 in
let fx = ref fx
and f'x = ref f'x in
while not(good_enough !x !xpre !fx) do
if !f'x = 0. then failwith(sprintf "Root1D.newton: f'(%g) = 0" !x);
x := !x -. !fx /. !f'x;
let fx_next, f'x_next = f_f' !x in
fx := fx_next;
f'x := f'x_next;
done;
!x *. 1.
type last_iter = A | B
let do_illinois improve f a b fa fb =
let a = ref a
and b = ref b in
let fa = ref fa in
let fb = ref fb in
try
let last = ref B in
while improve !a !b do
let x = !b -. !fb *. (!b -. !a) /. (!fb -. !fa) in
let fx = f x in
if fx = 0. then raise(Root x);
match !last with
| A -> if fx > 0. then (b := x; fb := fx; last := B)
else (a := x; fa := fx; fb := 0.5 *. !fb)
| B -> if fx < 0. then (a := x; fa := fx; last := A)
else (b := x; fb := fx; fa := 0.5 *. !fa)
done;
match !last with A -> !a | B -> !b
with Root r -> r
let illinois ?eps f a b =
let improve = match eps with
| None -> bisection_improve_default
| Some eps ->
if eps <= 0. then invalid_arg "Root1D.bisection: tol <= 0";
bisection_improve_eps eps in
let fa = f a in
if fa = 0. then a
else if fa < 0. then
let fb = f b in
if fb = 0. then b
else if fb < 0. then
invalid_arg "Root.illinois: f(a) and f(b) are both < 0."
else do_illinois improve f a b fa fb
else
let fb = f b in
if fb = 0. then b
else if fb > 0. then
invalid_arg "Root.illinois: f(a) and f(b) are both > 0."
else do_illinois improve f b a fb fa
let muller f a b = a
let brent ?(tol=eps) f a0 b0 =
let a = ref a0
and b = ref b0
and c = ref a0 in
let fa = ref(f !a)
and fb = ref(f !b) in
let fc = ref(!fa) in
if !fa = 0. then !a
else if !fb = 0. then !b
else if !fa *. !fb > 0. then
invalid_arg "Root1D.brent: f(a) and f(b) must have opposite signs"
else (
let continue = ref true in
while !continue do
let prev_step = !b -. !a in
if abs_float !fc < abs_float !fb then (
a := !b; b := !c; c := !a;
fa := !fb; fb := !fc; fc := !fa;
);
let tol_act = 2. *. epsilon_float *. abs_float(!b) +. 0.5 *. tol in
let c_b = !c -. !b in
if 0.5 *. abs_float c_b <= tol_act || !fb = 0. then
continue := false
else (
let new_step =
if abs_float prev_step >= tol_act
&& abs_float !fa > abs_float !fb then
let p, q =
if !a = !c then
let s = !fb /. !fa in (c_b *. s, 1. -. s)
else
let t = !fa /. !fc and r = !fb /. !fc and s = !fb /. !fa in
(s *. (c_b *. t *. (t -. r) -. (!b -. !a) *. (r -. 1.)),
(t -. 1.) *. (r -. 1.) *. (s -. 1.)) in
let p, q = if p > 0. then p, -. q else -. p, q in
if p < 0.75 *. c_b *. q -. 0.5 *. abs_float(tol_act *. q)
&& p < abs_float(0.5 *. prev_step *. q) then p /. q
else 0.5 *. c_b
else 0.5 *. c_b in
a := !b; fa := !fb;
if abs_float new_step > tol_act then
b := !b +. new_step
else
b := !b +. copysign tol_act c_b;
fb := f(!b);
if !fb *. !fc > 0. then (
c := !a; fc := !fa;
assert(!fb *. !fc <= 0.);
)
)
done;
!b
)
let twice_epsilon_float = 2. *. epsilon_float
let rec brent_loop half_tol f a fa b fb c fc d e =
let tol_act = twice_epsilon_float *. abs_float(b) +. half_tol in
let m = 0.5 *. (c -. b) in
if abs_float m <= tol_act || fb = 0. then b
else (
let step, e' =
if abs_float e < tol_act || abs_float fa <= abs_float fb then
m, m
else
let s = fb /. fa in
let p, q =
if a = c then
(2. *. m *. s, 1. -. s)
else
let q = fa /. fc and r = fb /. fc in
(s *. (2. *. m *. q *. (q -. r) -. (b -. a) *. (r -. 1.)),
(q -. 1.) *. (r -. 1.) *. (s -. 1.)) in
let p, q = if p > 0. then p, -. q else -. p, q in
if 2. *. p < 3. *. m *. q -. abs_float(tol_act *. q)
&& p < abs_float(0.5 *. e *. q)
then p /. q, d
else m, m
in
let b' = b +. (if abs_float step > tol_act then step
else if m > 0. then tol_act else -. tol_act) in
let fb' = f b' in
if (fb' > 0.) = (fc > 0.) then
let d = b' -. b in
if abs_float fb < abs_float fb' then
brent_loop half_tol f b' fb' b fb b' fb' d d
else
brent_loop half_tol f b fb b' fb' b fb d d
else
if abs_float fc < abs_float fb' then
brent_loop half_tol f b' fb' c fc b' fb' step e'
else
brent_loop half_tol f b fb b' fb' c fc step e'
)
;;
let brent1 ?(tol=eps) f a b =
if tol < 0. then invalid_arg "Root1D.brent: tol < 0.";
let fa = f a and fb = f b in
if fa = 0. then a
else if fb = 0. then b
else if (fa < 0. && fb < 0.) || (fa > 0. && fb > 0.) then
invalid_arg "Root1D.brent: f(a) and f(b) must have opposite signs"
else
let d = b -. a in
if abs_float fa < abs_float fb then
brent_loop (0.5 *. tol) f b fb a fa b fb d d
else
brent_loop (0.5 *. tol) f a fa b fb a fa d d
let rec brent2_loop half_tol f a fa ea b fb eb c fc ec d e =
let tol_act = twice_epsilon_float *. abs_float(b) +. half_tol in
let m = 0.5 *. (c -. b) in
if abs_float m <= tol_act || fb = 0. then b
else (
let step, e' =
if abs_float e < tol_act
|| (ea <= eb && ldexp (abs_float fa) (ea - eb) <= abs_float fb)
|| (ea > eb && ldexp (abs_float fb) (eb - ea) >= abs_float fa) then
m, m
else
let s = ldexp fb (eb - ea) /. fa in
let p, q =
if a = c then
(2. *. m *. s, 1. -. s)
else
let q = ldexp fa (ea - ec) /. fc
and r = ldexp fb (eb - ec) /. fc in
(s *. (2. *. m *. q *. (q -. r) -. (b -. a) *. (r -. 1.)),
(q -. 1.) *. (r -. 1.) *. (s -. 1.)) in
let p, q = if p > 0. then p, -. q else -. p, q in
if 2. *. p < 3. *. m *. q -. abs_float(tol_act *. q)
&& p < abs_float(0.5 *. e *. q)
then p /. q, d
else m, m
in
let b' = b +. (if abs_float step > tol_act then step
else if m > 0. then tol_act else -. tol_act) in
let fb', eb' = f b' in
if (fb' > 0.) = (fc > 0.) then
let d = b' -. b in
if (eb <= eb' && ldexp (abs_float fb) (eb - eb') < abs_float fb')
|| (eb > eb' && ldexp (abs_float fb') (eb' - eb) >= abs_float fb) then
brent2_loop half_tol f b' fb' eb' b fb eb b' fb' eb' d d
else
brent2_loop half_tol f b fb eb b' fb' eb' b fb eb d d
else
if (ec <= eb' && ldexp (abs_float fc) (ec - eb') < abs_float fb')
|| (ec > eb' && ldexp (abs_float fb') (eb' - ec) >= abs_float fc) then
brent2_loop half_tol f b' fb' eb' c fc ec b' fb' eb' step e'
else
brent2_loop half_tol f b fb eb b' fb' eb' c fc ec step e'
)
let brent2 ?(tol=eps) f a b =
if tol < 0. then invalid_arg "Root1D.brent2: tol < 0.";
let fa, ea = f a and fb, eb = f b in
if fa = 0. then a
else if fb = 0. then b
else if (fa < 0. && fb < 0.) || (fa > 0. && fb > 0.) then
invalid_arg "Root1D.brent: f(a) and f(b) must have opposite signs"
else
let d = b -. a in
if (ea <= eb && ldexp (abs_float fa) (ea - eb) < abs_float fb)
|| (ea > eb && ldexp (abs_float fb) (eb - ea) >= abs_float fa) then
brent2_loop (0.5 *. tol) f b fb eb a fa ea b fb eb d d
else
brent2_loop (0.5 *. tol) f a fa ea b fb eb a fa ea d d