Source file dummy.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
let () = Wrap_utils.init ();;
let ns = Py.import "sklearn.dummy"

module BaseEstimator = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "BaseEstimator"
     [||]
     []

let get_params ?deep self =
   Py.Module.get_function_with_keywords self "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])

let set_params ?params self =
   Py.Module.get_function_with_keywords self "set_params"
     [||]
     (match params with None -> [] | Some x -> x)

let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module ClassifierMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "ClassifierMixin"
     [||]
     []

let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords self "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
     |> Py.Float.to_float
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module DummyClassifier = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
                  let create ?strategy ?random_state ?constant () =
                     Py.Module.get_function_with_keywords ns "DummyClassifier"
                       [||]
                       (Wrap_utils.keyword_args [("strategy", Wrap_utils.Option.map strategy Py.String.of_string); ("random_state", Wrap_utils.Option.map random_state (function
| `Int x -> Py.Int.of_int x
| `RandomState x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)); ("constant", Wrap_utils.Option.map constant (function
| `Int x -> Py.Int.of_int x
| `String x -> Py.String.of_string x
| `Ndarray x -> Ndarray.to_pyobject x
))])

                  let fit ?sample_weight ~x ~y self =
                     Py.Module.get_function_with_keywords self "fit"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
))); ("y", Some(y |> Ndarray.to_pyobject))])

let get_params ?deep self =
   Py.Module.get_function_with_keywords self "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])

                  let predict ~x self =
                     Py.Module.get_function_with_keywords self "predict"
                       [||]
                       (Wrap_utils.keyword_args [("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
)))])
                       |> Ndarray.of_pyobject
                  let predict_log_proba ~x self =
                     Py.Module.get_function_with_keywords self "predict_log_proba"
                       [||]
                       (Wrap_utils.keyword_args [("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
)))])

                  let predict_proba ~x self =
                     Py.Module.get_function_with_keywords self "predict_proba"
                       [||]
                       (Wrap_utils.keyword_args [("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
)))])
                       |> Ndarray.of_pyobject
                  let score ?sample_weight ~x ~y self =
                     Py.Module.get_function_with_keywords self "score"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `None -> Py.String.of_string "None"
))); ("y", Some(y |> Ndarray.to_pyobject))])
                       |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords self "set_params"
     [||]
     (match params with None -> [] | Some x -> x)

let classes_ self =
  match Py.Object.get_attr_string self "classes_" with
| None -> raise (Wrap_utils.Attribute_not_found "classes_")
| Some x -> Ndarray.of_pyobject x
let n_classes_ self =
  match Py.Object.get_attr_string self "n_classes_" with
| None -> raise (Wrap_utils.Attribute_not_found "n_classes_")
| Some x -> Wrap_utils.id x
let class_prior_ self =
  match Py.Object.get_attr_string self "class_prior_" with
| None -> raise (Wrap_utils.Attribute_not_found "class_prior_")
| Some x -> Wrap_utils.id x
let n_outputs_ self =
  match Py.Object.get_attr_string self "n_outputs_" with
| None -> raise (Wrap_utils.Attribute_not_found "n_outputs_")
| Some x -> Py.Int.to_int x
let sparse_output_ self =
  match Py.Object.get_attr_string self "sparse_output_" with
| None -> raise (Wrap_utils.Attribute_not_found "sparse_output_")
| Some x -> Py.Bool.to_bool x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module DummyRegressor = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
                  let create ?strategy ?constant ?quantile () =
                     Py.Module.get_function_with_keywords ns "DummyRegressor"
                       [||]
                       (Wrap_utils.keyword_args [("strategy", Wrap_utils.Option.map strategy Py.String.of_string); ("constant", Wrap_utils.Option.map constant (function
| `Int x -> Py.Int.of_int x
| `Float x -> Py.Float.of_float x
| `Ndarray x -> Ndarray.to_pyobject x
)); ("quantile", quantile)])

                  let fit ?sample_weight ~x ~y self =
                     Py.Module.get_function_with_keywords self "fit"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
))); ("y", Some(y |> Ndarray.to_pyobject))])

let get_params ?deep self =
   Py.Module.get_function_with_keywords self "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])

                  let predict ?return_std ~x self =
                     Py.Module.get_function_with_keywords self "predict"
                       [||]
                       (Wrap_utils.keyword_args [("return_std", Wrap_utils.Option.map return_std Py.Bool.of_bool); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
)))])
                       |> Ndarray.of_pyobject
                  let score ?sample_weight ~x ~y self =
                     Py.Module.get_function_with_keywords self "score"
                       [||]
                       (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `None -> Py.String.of_string "None"
))); ("y", Some(y |> Ndarray.to_pyobject))])
                       |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords self "set_params"
     [||]
     (match params with None -> [] | Some x -> x)

let constant_ self =
  match Py.Object.get_attr_string self "constant_" with
| None -> raise (Wrap_utils.Attribute_not_found "constant_")
| Some x -> Ndarray.of_pyobject x
let n_outputs_ self =
  match Py.Object.get_attr_string self "n_outputs_" with
| None -> raise (Wrap_utils.Attribute_not_found "n_outputs_")
| Some x -> Py.Int.to_int x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module MultiOutputMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "MultiOutputMixin"
     [||]
     []

let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module RegressorMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "RegressorMixin"
     [||]
     []

let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords self "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
     |> Py.Float.to_float
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
                  let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?warn_on_dtype ?estimator ~array () =
                     Py.Module.get_function_with_keywords ns "check_array"
                       [||]
                       (Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `String x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `String x -> Py.String.of_string x
| `Dtype x -> Wrap_utils.id x
| `TypeList x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
| `None -> Py.String.of_string "None"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Bool x -> Py.Bool.of_bool x
| `Allow_nan -> Py.String.of_string "allow-nan"
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype (function
| `Bool x -> Py.Bool.of_bool x
| `None -> Py.String.of_string "None"
)); ("estimator", Wrap_utils.Option.map estimator (function
| `String x -> Py.String.of_string x
| `Estimator x -> Wrap_utils.id x
)); ("array", Some(array ))])

let check_consistent_length arrays =
   Py.Module.get_function_with_keywords ns "check_consistent_length"
     (Wrap_utils.pos_arg Wrap_utils.id arrays)
     []

                  let check_is_fitted ?attributes ?msg ?all_or_any ~estimator () =
                     Py.Module.get_function_with_keywords ns "check_is_fitted"
                       [||]
                       (Wrap_utils.keyword_args [("attributes", Wrap_utils.Option.map attributes (function
| `String x -> Py.String.of_string x
| `ArrayLike x -> Wrap_utils.id x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("msg", Wrap_utils.Option.map msg Py.String.of_string); ("all_or_any", Wrap_utils.Option.map all_or_any (function
| `Callable x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)); ("estimator", Some(estimator ))])

                  let check_random_state ~seed () =
                     Py.Module.get_function_with_keywords ns "check_random_state"
                       [||]
                       (Wrap_utils.keyword_args [("seed", Some(seed |> (function
| `Int x -> Py.Int.of_int x
| `RandomState x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)))])

let class_distribution ?sample_weight ~y () =
   Py.Module.get_function_with_keywords ns "class_distribution"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("y", Some(y ))])
     |> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1)), (Wrap_utils.id (Py.Tuple.get x 2))))
module Deprecated = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create ?extra () =
   Py.Module.get_function_with_keywords ns "deprecated"
     [||]
     (Wrap_utils.keyword_args [("extra", Wrap_utils.Option.map extra Py.String.of_string)])

let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end