Source file Calibration.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
let () = Wrap_utils.init ();;
let __wrap_namespace = Py.import "sklearn.calibration"

let get_py name = Py.Module.get __wrap_namespace name
module CalibratedClassifierCV = struct
type tag = [`CalibratedClassifierCV]
type t = [`BaseEstimator | `CalibratedClassifierCV | `ClassifierMixin | `MetaEstimatorMixin | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_meta_estimator x = (x :> [`MetaEstimatorMixin] Obj.t)
                  let create ?base_estimator ?method_ ?cv () =
                     Py.Module.get_function_with_keywords __wrap_namespace "CalibratedClassifierCV"
                       [||]
                       (Wrap_utils.keyword_args [("base_estimator", Wrap_utils.Option.map base_estimator Np.Obj.to_pyobject); ("method", Wrap_utils.Option.map method_ (function
| `Sigmoid -> Py.String.of_string "sigmoid"
| `Isotonic -> Py.String.of_string "isotonic"
)); ("cv", Wrap_utils.Option.map cv (function
| `Arr x -> Np.Obj.to_pyobject x
| `BaseCrossValidator x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
| `Prefit -> Py.String.of_string "prefit"
))])
                       |> of_pyobject
let fit ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject

let classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "classes_" with
  | None -> failwith "attribute classes_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let classes_ self = match classes_opt self with
  | None -> raise Not_found
  | Some x -> x

let calibrated_classifiers_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "calibrated_classifiers_" with
  | None -> failwith "attribute calibrated_classifiers_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let calibrated_classifiers_ self = match calibrated_classifiers_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module IsotonicRegression = struct
type tag = [`IsotonicRegression]
type t = [`BaseEstimator | `IsotonicRegression | `Object | `RegressorMixin | `TransformerMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_regressor x = (x :> [`RegressorMixin] Obj.t)
let as_transformer x = (x :> [`TransformerMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
                  let create ?y_min ?y_max ?increasing ?out_of_bounds () =
                     Py.Module.get_function_with_keywords __wrap_namespace "IsotonicRegression"
                       [||]
                       (Wrap_utils.keyword_args [("y_min", y_min); ("y_max", y_max); ("increasing", Wrap_utils.Option.map increasing (function
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("out_of_bounds", Wrap_utils.Option.map out_of_bounds Py.String.of_string)])
                       |> of_pyobject
let fit ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let fit_transform ?y ?fit_params ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit_transform"
     [||]
     (List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ~t self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("T", Some(t |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject
let transform ~t self =
   Py.Module.get_function_with_keywords (to_pyobject self) "transform"
     [||]
     (Wrap_utils.keyword_args [("T", Some(t |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))

let x_min_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "X_min_" with
  | None -> failwith "attribute X_min_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let x_min_ self = match x_min_opt self with
  | None -> raise Not_found
  | Some x -> x

let x_max_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "X_max_" with
  | None -> failwith "attribute X_max_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Float.to_float x)

let x_max_ self = match x_max_opt self with
  | None -> raise Not_found
  | Some x -> x

let f_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "f_" with
  | None -> failwith "attribute f_ not found"
  | Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)

let f_ self = match f_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module LabelBinarizer = struct
type tag = [`LabelBinarizer]
type t = [`BaseEstimator | `LabelBinarizer | `Object | `TransformerMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_transformer x = (x :> [`TransformerMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let create ?neg_label ?pos_label ?sparse_output () =
   Py.Module.get_function_with_keywords __wrap_namespace "LabelBinarizer"
     [||]
     (Wrap_utils.keyword_args [("neg_label", Wrap_utils.Option.map neg_label Py.Int.of_int); ("pos_label", Wrap_utils.Option.map pos_label Py.Int.of_int); ("sparse_output", Wrap_utils.Option.map sparse_output Py.Bool.of_bool)])
     |> of_pyobject
let fit ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let fit_transform ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit_transform"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let inverse_transform ?threshold ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "inverse_transform"
     [||]
     (Wrap_utils.keyword_args [("threshold", Wrap_utils.Option.map threshold Py.Float.of_float); ("Y", Some(y |> Np.Obj.to_pyobject))])

let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject
let transform ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "transform"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))

let classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "classes_" with
  | None -> failwith "attribute classes_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let classes_ self = match classes_opt self with
  | None -> raise Not_found
  | Some x -> x

let y_type_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "y_type_" with
  | None -> failwith "attribute y_type_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.String.to_string x)

let y_type_ self = match y_type_opt self with
  | None -> raise Not_found
  | Some x -> x

let sparse_input_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "sparse_input_" with
  | None -> failwith "attribute sparse_input_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Bool.to_bool x)

let sparse_input_ self = match sparse_input_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module LabelEncoder = struct
type tag = [`LabelEncoder]
type t = [`BaseEstimator | `LabelEncoder | `Object | `TransformerMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_transformer x = (x :> [`TransformerMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let create () =
   Py.Module.get_function_with_keywords __wrap_namespace "LabelEncoder"
     [||]
     []
     |> of_pyobject
let fit ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let fit_transform ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit_transform"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let inverse_transform ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "inverse_transform"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject
let transform ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "transform"
     [||]
     (Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))

let classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "classes_" with
  | None -> failwith "attribute classes_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let classes_ self = match classes_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module LinearSVC = struct
type tag = [`LinearSVC]
type t = [`BaseEstimator | `ClassifierMixin | `LinearClassifierMixin | `LinearSVC | `Object | `SparseCoefMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_linear_classifier x = (x :> [`LinearClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let as_sparse_coef x = (x :> [`SparseCoefMixin] Obj.t)
                  let create ?penalty ?loss ?dual ?tol ?c ?multi_class ?fit_intercept ?intercept_scaling ?class_weight ?verbose ?random_state ?max_iter () =
                     Py.Module.get_function_with_keywords __wrap_namespace "LinearSVC"
                       [||]
                       (Wrap_utils.keyword_args [("penalty", Wrap_utils.Option.map penalty (function
| `L2 -> Py.String.of_string "l2"
| `L1 -> Py.String.of_string "l1"
)); ("loss", Wrap_utils.Option.map loss (function
| `Hinge -> Py.String.of_string "hinge"
| `Squared_hinge -> Py.String.of_string "squared_hinge"
)); ("dual", Wrap_utils.Option.map dual Py.Bool.of_bool); ("tol", Wrap_utils.Option.map tol Py.Float.of_float); ("C", Wrap_utils.Option.map c Py.Float.of_float); ("multi_class", Wrap_utils.Option.map multi_class (function
| `Crammer_singer -> Py.String.of_string "crammer_singer"
| `Ovr -> Py.String.of_string "ovr"
)); ("fit_intercept", Wrap_utils.Option.map fit_intercept Py.Bool.of_bool); ("intercept_scaling", Wrap_utils.Option.map intercept_scaling Py.Float.of_float); ("class_weight", Wrap_utils.Option.map class_weight (function
| `DictIntToFloat x -> (Py.Dict.of_bindings_map Py.Int.of_int Py.Float.of_float) x
| `Balanced -> Py.String.of_string "balanced"
)); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("random_state", Wrap_utils.Option.map random_state Py.Int.of_int); ("max_iter", Wrap_utils.Option.map max_iter Py.Int.of_int)])
                       |> of_pyobject
let decision_function ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "decision_function"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let densify self =
   Py.Module.get_function_with_keywords (to_pyobject self) "densify"
     [||]
     []
     |> of_pyobject
let fit ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "fit"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
     |> Dict.of_pyobject
let predict ~x self =
   Py.Module.get_function_with_keywords (to_pyobject self) "predict"
     [||]
     (Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords (to_pyobject self) "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
     [||]
     (match params with None -> [] | Some x -> x)
     |> of_pyobject
let sparsify self =
   Py.Module.get_function_with_keywords (to_pyobject self) "sparsify"
     [||]
     []
     |> of_pyobject

let coef_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "coef_" with
  | None -> failwith "attribute coef_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let coef_ self = match coef_opt self with
  | None -> raise Not_found
  | Some x -> x

let intercept_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "intercept_" with
  | None -> failwith "attribute intercept_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let intercept_ self = match intercept_opt self with
  | None -> raise Not_found
  | Some x -> x

let classes_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "classes_" with
  | None -> failwith "attribute classes_ not found"
  | Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)

let classes_ self = match classes_opt self with
  | None -> raise Not_found
  | Some x -> x

let n_iter_opt self =
  match Py.Object.get_attr_string (to_pyobject self) "n_iter_" with
  | None -> failwith "attribute n_iter_ not found"
  | Some x -> if Py.is_none x then None else Some (Py.Int.to_int x)

let n_iter_ self = match n_iter_opt self with
  | None -> raise Not_found
  | Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
                  let calibration_curve ?normalize ?n_bins ?strategy ~y_true ~y_prob () =
                     Py.Module.get_function_with_keywords __wrap_namespace "calibration_curve"
                       [||]
                       (Wrap_utils.keyword_args [("normalize", Wrap_utils.Option.map normalize Py.Bool.of_bool); ("n_bins", Wrap_utils.Option.map n_bins Py.Int.of_int); ("strategy", Wrap_utils.Option.map strategy (function
| `Uniform -> Py.String.of_string "uniform"
| `Quantile -> Py.String.of_string "quantile"
)); ("y_true", Some(y_true |> Np.Obj.to_pyobject)); ("y_prob", Some(y_prob |> Np.Obj.to_pyobject))])
                       |> (fun x -> (((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 0)), ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 1))))
                  let check_X_y ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?multi_output ?ensure_min_samples ?ensure_min_features ?y_numeric ?warn_on_dtype ?estimator ~x ~y () =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_X_y"
                       [||]
                       (Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("multi_output", Wrap_utils.Option.map multi_output Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("y_numeric", Wrap_utils.Option.map y_numeric Py.Bool.of_bool); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype Py.Bool.of_bool); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
                       |> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1))))
                  let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?warn_on_dtype ?estimator ~array () =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_array"
                       [||]
                       (Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype Py.Bool.of_bool); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("array", Some(array ))])

let check_consistent_length arrays =
   Py.Module.get_function_with_keywords __wrap_namespace "check_consistent_length"
     (Array.of_list @@ List.concat [(List.map Wrap_utils.id arrays)])
     []

                  let check_cv ?cv ?y ?classifier () =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_cv"
                       [||]
                       (Wrap_utils.keyword_args [("cv", Wrap_utils.Option.map cv (function
| `Arr x -> Np.Obj.to_pyobject x
| `BaseCrossValidator x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
)); ("y", Wrap_utils.Option.map y Np.Obj.to_pyobject); ("classifier", Wrap_utils.Option.map classifier Py.Bool.of_bool)])
                       |> (fun py -> (Np.Obj.of_pyobject py : [`BaseCrossValidator|`Object] Np.Obj.t))
                  let check_is_fitted ?attributes ?msg ?all_or_any ~estimator () =
                     Py.Module.get_function_with_keywords __wrap_namespace "check_is_fitted"
                       [||]
                       (Wrap_utils.keyword_args [("attributes", Wrap_utils.Option.map attributes (function
| `S x -> Py.String.of_string x
| `Arr x -> Np.Obj.to_pyobject x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("msg", Wrap_utils.Option.map msg Py.String.of_string); ("all_or_any", Wrap_utils.Option.map all_or_any (function
| `Callable x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])

let clone ?safe ~estimator () =
   Py.Module.get_function_with_keywords __wrap_namespace "clone"
     [||]
     (Wrap_utils.keyword_args [("safe", Wrap_utils.Option.map safe Py.Bool.of_bool); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])

let column_or_1d ?warn ~y () =
   Py.Module.get_function_with_keywords __wrap_namespace "column_or_1d"
     [||]
     (Wrap_utils.keyword_args [("warn", Wrap_utils.Option.map warn Py.Bool.of_bool); ("y", Some(y |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let expit ?out ?where ~x () =
   Py.Module.get_function_with_keywords __wrap_namespace "expit"
     (Array.of_list @@ List.concat [[x |> Np.Obj.to_pyobject]])
     (Wrap_utils.keyword_args [("out", out); ("where", where)])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
                  let fmin_bfgs ?fprime ?args ?gtol ?norm ?epsilon ?maxiter ?full_output ?disp ?retall ?callback ~f ~x0 () =
                     Py.Module.get_function_with_keywords __wrap_namespace "fmin_bfgs"
                       [||]
                       (Wrap_utils.keyword_args [("fprime", fprime); ("args", args); ("gtol", Wrap_utils.Option.map gtol Py.Float.of_float); ("norm", Wrap_utils.Option.map norm Py.Float.of_float); ("epsilon", Wrap_utils.Option.map epsilon (function
| `Arr x -> Np.Obj.to_pyobject x
| `I x -> Py.Int.of_int x
)); ("maxiter", Wrap_utils.Option.map maxiter Py.Int.of_int); ("full_output", Wrap_utils.Option.map full_output Py.Bool.of_bool); ("disp", Wrap_utils.Option.map disp Py.Bool.of_bool); ("retall", Wrap_utils.Option.map retall Py.Bool.of_bool); ("callback", callback); ("f", Some(f )); ("x0", Some(x0 |> Np.Obj.to_pyobject))])
                       |> (fun x -> (((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 0)), (Py.Float.to_float (Py.Tuple.get x 1)), ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 2)), ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 3)), (Py.Int.to_int (Py.Tuple.get x 4)), (Py.Int.to_int (Py.Tuple.get x 5)), (Py.Int.to_int (Py.Tuple.get x 6)), ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 7))))
let indexable iterables =
   Py.Module.get_function_with_keywords __wrap_namespace "indexable"
     (Array.of_list @@ List.concat [(List.map Wrap_utils.id iterables)])
     []

let label_binarize ?neg_label ?pos_label ?sparse_output ~y ~classes () =
   Py.Module.get_function_with_keywords __wrap_namespace "label_binarize"
     [||]
     (Wrap_utils.keyword_args [("neg_label", Wrap_utils.Option.map neg_label Py.Int.of_int); ("pos_label", Wrap_utils.Option.map pos_label Py.Int.of_int); ("sparse_output", Wrap_utils.Option.map sparse_output Py.Bool.of_bool); ("y", Some(y |> Np.Obj.to_pyobject)); ("classes", Some(classes |> Np.Obj.to_pyobject))])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let signature ?follow_wrapped ~obj () =
   Py.Module.get_function_with_keywords __wrap_namespace "signature"
     [||]
     (Wrap_utils.keyword_args [("follow_wrapped", follow_wrapped); ("obj", Some(obj ))])

let xlogy ?out ?where ~x () =
   Py.Module.get_function_with_keywords __wrap_namespace "xlogy"
     (Array.of_list @@ List.concat [[x |> Np.Obj.to_pyobject]])
     (Wrap_utils.keyword_args [("out", out); ("where", where)])
     |> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))