1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
let src = Logs.Src.create "spoke.flow"
module Log = (val Logs.src_log src : Logs.LOG)
type ctx = {
a_buffer : bytes;
mutable a_pos : int;
mutable a_max : int;
b_buffer : bytes;
mutable b_pos : int;
}
let ctx () =
{
a_buffer = Bytes.create 128;
a_pos = 0;
a_max = 0;
b_buffer = Bytes.create 128;
b_pos = 0;
}
let remaining_bytes_of_ctx { a_pos; a_max; a_buffer; _ } =
if a_pos >= a_max then None
else Some (Bytes.sub_string a_buffer a_pos (a_max - a_pos))
type error = [ `Not_enough_space | `End_of_input | `Spoke of Spoke.error ]
let pp_error ppf = function
| `Not_enough_space -> Fmt.pf ppf "Not enough space"
| `End_of_input -> Fmt.pf ppf "End of input"
| `Spoke err -> Spoke.pp_error ppf err
type 'a t =
| Rd of { buf : bytes; off : int; len : int; k : 'a krd }
| Wr of { str : string; off : int; len : int; k : 'a kwr }
| Done of 'a
| Fail of error
and 'a krd = [ `End | `Len of int ] -> 'a t
and 'a kwr = int -> 'a t
exception Leave of error
let leave_with _ctx error = raise (Leave error)
let safe k ctx = try k ctx with Leave err -> Fail err
let always x _ = x
module Send = struct
let flush k0 ctx =
if ctx.b_pos > 0 then
let rec k1 n =
if n < ctx.b_pos then
Wr
{
str = Bytes.unsafe_to_string ctx.b_buffer;
off = n;
len = ctx.b_pos - n;
k = (fun m -> k1 (n + m));
}
else (
ctx.b_pos <- 0;
k0 ctx)
in
k1 0
else k0 ctx
let write str ctx =
let max = Bytes.length ctx.b_buffer in
let go j l ctx =
let rem = max - ctx.b_pos in
let len = if l > rem then rem else l in
Bytes.blit_string str j ctx.b_buffer ctx.b_pos len;
ctx.b_pos <- ctx.b_pos + len;
if len < l then leave_with ctx `Not_enough_space
in
go 0 (String.length str) ctx
let send ctx str =
safe
(fun ctx ->
write str ctx;
flush (always (Done ())) ctx)
ctx
end
module Recv = struct
let prompt ~required k ctx =
if ctx.a_pos > 0 then (
let rest = ctx.a_max - ctx.a_pos in
Bytes.blit ctx.a_buffer ctx.a_pos ctx.a_buffer 0 rest;
ctx.a_max <- rest;
ctx.a_pos <- 0);
let rec go off =
if off = Bytes.length ctx.a_buffer then Fail `Not_enough_space
else if off - ctx.a_pos < required then
let k = function
| `Len len -> go (off + len)
| `End -> Fail `End_of_input
in
Rd { buf = ctx.a_buffer; off; len = Bytes.length ctx.a_buffer - off; k }
else (
ctx.a_max <- off;
safe k ctx)
in
go ctx.a_max
let recv ctx ~len =
let k ctx =
let str = Bytes.sub_string ctx.a_buffer ctx.a_pos len in
ctx.a_pos <- ctx.a_pos + len;
Done str
in
prompt ~required:len k ctx
end
let ( let* ) =
let rec go f m len =
match m len with
| Done v -> f v
| Fail err -> Fail err
| Rd { buf; off; len; k } -> Rd { buf; off; len; k = go f k }
| Wr { str; off; len; k } ->
let k0 = function `End -> k 0 | `Len len -> k len in
let k1 = function 0 -> go f k0 `End | len -> go f k0 (`Len len) in
Wr { str; off; len; k = k1 }
in
fun m f ->
match m with
| Done v -> f v
| Fail err -> Fail err
| Rd { buf; off; len; k } -> Rd { buf; off; len; k = go f k }
| Wr { str; off; len; k } ->
let k0 = function `End -> k 0 | `Len len -> k len in
let k1 = function 0 -> go f k0 `End | len -> go f k0 (`Len len) in
Wr { str; off; len; k = k1 }
let ( let+ ) x f = match x with Ok v -> f v | Error err -> Fail (`Spoke err)
let send = Send.send
let recv = Recv.recv
let return v = Done v
type cfg = Cfg : 'a Spoke.algorithm * 'a -> cfg
let handshake_client ctx ?g ~identity password =
let* public = recv ctx ~len:34 in
let+ ciphers = Spoke.ciphers_of_public public in
let+ client, packet = Spoke.hello ?g ~public password in
let* () = send ctx packet in
let* packet = recv ctx ~len:96 in
let+ shared_keys, packet =
Spoke.client_compute ~client ~identity (String.sub packet 0 32)
(String.sub packet 32 64)
in
let* () = send ctx packet in
return (ciphers, shared_keys)
let handshake_server ctx ?g ~password ~identity (Cfg (algorithm, arguments)) =
let ciphers = Spoke.(AEAD GCM, AEAD ChaCha20_Poly1305) in
let secret, public =
Spoke.generate ?g ~password ~ciphers ~algorithm arguments
in
let* () = send ctx (Spoke.public_to_string public) in
let* packet = recv ctx ~len:32 in
let+ server, (_Y, validator) =
Spoke.server_compute ~secret ~identity packet
in
let* () = send ctx (_Y ^ validator) in
let* packet = recv ctx ~len:64 in
let+ shared_keys = Spoke.server_finalize ~server packet in
return (ciphers, shared_keys)
module type CIPHER_BLOCK = sig
type key
val authenticate_encrypt :
key:key -> nonce:Cstruct.t -> ?adata:Cstruct.t -> Cstruct.t -> Cstruct.t
val authenticate_decrypt :
key:key ->
nonce:Cstruct.t ->
?adata:Cstruct.t ->
Cstruct.t ->
Cstruct.t option
val of_secret : Cstruct.t -> key
val tag_size : int
end
type 'k cipher_block = (module CIPHER_BLOCK with type key = 'k)
let module_of : type k. k Spoke.aead -> k cipher_block = function
| Spoke.GCM -> (module Mirage_crypto.Cipher_block.AES.GCM)
| Spoke.CCM ->
let module M = struct
include Mirage_crypto.Cipher_block.AES.CCM
let of_secret =
of_secret ~maclen:16
let tag_size = 16
end in
(module M)
| Spoke.ChaCha20_Poly1305 ->
let module M = struct
include Mirage_crypto.Chacha20
let tag_size = Mirage_crypto.Poly1305.mac_size
end in
(module M)
module Make (Flow : Mirage_flow.S) = struct
open Lwt.Infix
let ( >>? ) = Lwt_result.bind
let reword_error f = function Ok v -> Ok v | Error err -> Error (f err)
type symmetric =
| Symmetric : {
key : 'k;
nonce : Cstruct.t;
impl : 'k cipher_block;
}
-> symmetric
external xor_into :
Bigstringaf.t ->
src_off:int ->
Bigstringaf.t ->
dst_off:int ->
len:int ->
unit = "spoke_xor_into_generic_bigarray"
let xor src dst =
let len = min (Cstruct.length src) (Cstruct.length dst) in
xor_into (Cstruct.to_bigarray src) ~src_off:0 (Cstruct.to_bigarray dst)
~dst_off:0 ~len
let xor a b =
let len = min (Cstruct.length a) (Cstruct.length b) in
let res = Cstruct.of_string (Cstruct.copy b 0 len) in
xor a res;
res
let make_nonce nonce seq =
let seq =
let len = Cstruct.length nonce in
let seq =
let buf = Cstruct.create 8 in
Cstruct.BE.set_uint64 buf 0 seq;
buf
in
let pad = Cstruct.create (len - 8) in
Cstruct.append pad seq
in
xor nonce seq
let make_adata len =
let buf = Cstruct.create 4 in
Cstruct.BE.set_uint16 buf 0 Spoke.version;
Cstruct.BE.set_uint16 buf 2 len;
buf
let encrypt (Symmetric { key; nonce; impl = (module Cipher_block) }) sequence
buf =
let nonce = make_nonce nonce sequence in
let adata = make_adata (Cstruct.length buf) in
Cipher_block.authenticate_encrypt ~key ~adata ~nonce buf
let decrypt (Symmetric { key; nonce; impl = (module Cipher_block) }) sequence
buf =
let nonce = make_nonce nonce sequence in
let adata = make_adata (Cstruct.length buf - Cipher_block.tag_size) in
Cipher_block.authenticate_decrypt ~key ~adata ~nonce buf
let symmetric_of_key_nonce_and_cipher key_nonce (Spoke.AEAD aead) =
let key_len =
match aead with
| Spoke.GCM -> 32
| Spoke.CCM -> 32
| Spoke.ChaCha20_Poly1305 -> 32
in
let nonce_len =
match aead with
| Spoke.GCM -> 12
| Spoke.CCM -> 12
| Spoke.ChaCha20_Poly1305 -> 12
in
let module Cipher_block = (val module_of aead) in
let key = Cstruct.of_string ~off:0 ~len:key_len key_nonce in
Log.debug (fun m ->
m "Private key: %s" (Base64.encode_exn (String.sub key_nonce 0 key_len)));
let key = Cipher_block.of_secret key in
let nonce = Cstruct.of_string ~off:key_len ~len:nonce_len key_nonce in
Symmetric { key; nonce; impl = (module Cipher_block) }
type flow = {
flow : Flow.flow;
recv : symmetric;
send : symmetric;
recv_record : Cstruct.t;
send_record : Cstruct.t;
mutable recv_seq : int64;
mutable send_seq : int64;
recv_queue : (char, Bigarray.int8_unsigned_elt) Ke.Rke.t;
send_queue : (char, Bigarray.int8_unsigned_elt) Ke.Rke.t;
}
let blit0 src src_off dst dst_off len =
let dst = Cstruct.of_bigarray dst ~off:dst_off ~len in
Cstruct.blit src src_off dst 0 len
let blit1 src src_off dst dst_off len =
let src = Cstruct.of_bigarray src ~off:src_off ~len in
Cstruct.blit_to_bytes src 0 dst dst_off len
let run queue flow fiber =
let cs_wr = Cstruct.create 128 in
let allocator len = Cstruct.sub cs_wr 0 len in
let rec go = function
| Done v -> Lwt.return_ok v
| Fail (#error as err) -> Lwt.return_error err
| Rd { buf; off; len; k } as fiber ->
if Ke.Rke.is_empty queue then (
Flow.read flow >|= reword_error (fun err -> `Flow err) >>? function
| `Eof -> go (k `End)
| `Data cs ->
Ke.Rke.N.push queue ~blit:blit0 ~length:Cstruct.length cs;
go fiber)
else
let len = min len (Ke.Rke.length queue) in
Ke.Rke.N.keep_exn queue ~blit:blit1 ~length:Bytes.length ~off ~len
buf;
Ke.Rke.N.shift_exn queue len;
go (k (`Len len))
| Wr { str; off; len; k } ->
let cs = Cstruct.of_string ~allocator ~off ~len str in
Flow.write flow cs >|= reword_error (fun err -> `Flow_write err)
>>? fun () -> go (k len)
in
go fiber
let max_record = 0xFFFF
let client_of_flow ?g ~identity ~password flow =
let ctx = ctx () in
let queue = Ke.Rke.create ~capacity:128 Bigarray.char in
run queue flow (handshake_client ctx ?g ~identity password)
>>? fun ((cipher0, cipher1), (k0, k1)) ->
let rem = remaining_bytes_of_ctx ctx in
let rem = Option.value ~default:"" rem in
let recv = symmetric_of_key_nonce_and_cipher k0 cipher0 in
let send = symmetric_of_key_nonce_and_cipher k1 cipher1 in
let recv_queue = Ke.Rke.create ~capacity:0x10000 Bigarray.char in
let blit src src_off dst dst_off len =
Bigstringaf.blit_from_string src ~src_off dst ~dst_off ~len
in
Ke.Rke.N.push recv_queue ~blit ~length:String.length rem;
let send_queue = Ke.Rke.create ~capacity:0x10000 Bigarray.char in
let recv_record =
let (Symmetric { impl = (module Cipher_block); _ }) = recv in
Cstruct.create (2 + max_record + Cipher_block.tag_size)
in
let send_record =
let (Symmetric { impl = (module Cipher_block); _ }) = send in
Cstruct.create (2 + max_record + Cipher_block.tag_size)
in
Lwt.return_ok
{
flow;
recv;
send;
recv_record;
send_record;
recv_seq = 0L;
send_seq = 0L;
recv_queue;
send_queue;
}
let server_of_flow ?g ~cfg ~identity ~password flow =
let ctx = ctx () in
let queue = Ke.Rke.create ~capacity:128 Bigarray.char in
run queue flow (handshake_server ctx ?g ~identity ~password cfg)
>>? fun ((cipher0, cipher1), (k0, k1)) ->
let rem = remaining_bytes_of_ctx ctx in
let rem = Option.value ~default:"" rem in
Log.debug (fun m ->
m "Remains %d byte(s) from the client." (String.length rem));
let recv = symmetric_of_key_nonce_and_cipher k1 cipher1 in
let send = symmetric_of_key_nonce_and_cipher k0 cipher0 in
let recv_queue = Ke.Rke.create ~capacity:0x10000 Bigarray.char in
let blit src src_off dst dst_off len =
Bigstringaf.blit_from_string src ~src_off dst ~dst_off ~len
in
Ke.Rke.N.push recv_queue ~blit ~length:String.length rem;
let send_queue = Ke.Rke.create ~capacity:0x10000 Bigarray.char in
let recv_record =
let (Symmetric { impl = (module Cipher_block); _ }) = recv in
Cstruct.create (2 + max_record + Cipher_block.tag_size)
in
let send_record =
let (Symmetric { impl = (module Cipher_block); _ }) = send in
Cstruct.create (2 + max_record + Cipher_block.tag_size)
in
Lwt.return_ok
{
flow;
recv;
send;
recv_record;
send_record;
recv_seq = 0L;
send_seq = 0L;
recv_queue;
send_queue;
}
type write_error =
[ `Closed | `Flow of Flow.error | `Flow_write of Flow.write_error | error ]
let pp_write_error ppf = function
| `Closed -> Flow.pp_write_error ppf `Closed
| `Flow err -> Flow.pp_error ppf err
| `Flow_write err -> Flow.pp_write_error ppf err
| #error as err -> pp_error ppf err
type error = [ `Flow of Flow.error | `Corrupted ]
let pp_error ppf = function
| `Flow err -> Flow.pp_error ppf err
| `Corrupted -> Fmt.pf ppf "Communication corrupted"
let get_record record queue symmetric =
let (Symmetric { impl = (module Cipher_block); _ }) = symmetric in
match Ke.Rke.length queue with
| 0 -> `Await_hdr
| 1 -> `Await_rec 1
| 2 | _ ->
let blit src src_off dst dst_off len =
let src = Cstruct.of_bigarray src ~off:src_off ~len in
Cstruct.blit src 0 dst dst_off len
in
Ke.Rke.N.keep_exn queue ~blit ~length:Cstruct.length record ~len:2;
let len = Cstruct.BE.get_uint16 record 0 in
if Ke.Rke.length queue >= len then (
Ke.Rke.N.keep_exn queue ~blit ~length:Cstruct.length record ~len;
Ke.Rke.N.shift_exn queue len;
`Record (Cstruct.sub record 2 (len - 2)))
else `Await_rec (len - Ke.Rke.length queue)
let rec read flow =
match get_record flow.recv_record flow.recv_queue flow.recv with
| `Record buf -> (
match decrypt flow.recv flow.recv_seq buf with
| Some buf ->
flow.recv_seq <- Int64.succ flow.recv_seq;
Lwt.return_ok (`Data buf)
| None -> Lwt.return_error `Corrupted)
| (`Await_hdr | `Await_rec _) as await -> (
Flow.read flow.flow >>= function
| Error err -> Lwt.return_error (`Flow err)
| Ok `Eof ->
if await = `Await_hdr then Lwt.return_ok `Eof
else Lwt.return_error `Corrupted
| Ok (`Data buf) ->
let blit src src_off dst dst_off len =
let dst = Cstruct.of_bigarray dst ~off:dst_off ~len in
Cstruct.blit src src_off dst 0 len
in
Ke.Rke.N.push flow.recv_queue ~blit ~length:Cstruct.length buf;
read flow)
let record ~dst ~sequence queue symmetric =
let len = min max_record (Ke.Rke.length queue) in
let blit src src_off dst dst_off len =
let src = Cstruct.of_bigarray src ~off:src_off ~len in
Cstruct.blit src 0 dst dst_off len
in
Ke.Rke.N.keep_exn queue ~length:Cstruct.length ~blit ~off:2 ~len dst;
let buf = encrypt symmetric sequence (Cstruct.sub dst 2 len) in
Ke.Rke.N.shift_exn queue len;
let len = 2 + Cstruct.length buf in
Cstruct.BE.set_uint16 dst 0 len;
Cstruct.blit buf 0 dst 2 (Cstruct.length buf);
Cstruct.sub dst 0 len
let rec flush flow =
if not (Ke.Rke.is_empty flow.send_queue) then (
let record =
record ~dst:flow.send_record ~sequence:flow.send_seq flow.send_queue
flow.send
in
flow.send_seq <- Int64.succ flow.send_seq;
Flow.write flow.flow record >>? fun () ->
flush flow)
else Lwt.return_ok ()
let write flow data =
Ke.Rke.N.push flow.send_queue ~blit:blit0 ~length:Cstruct.length data;
flush flow >>= function
| Ok () -> Lwt.return_ok ()
| Error err -> Lwt.return_error (`Flow_write err)
let read flow = read flow
let write flow data = write flow data
let writev _flow _ccs = assert false
let close { flow; _ } = Flow.close flow
end