Source file tdigest.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
open! Core
open Option.Monad_infix

type delta =
  | Merging of float
  | Discrete
[@@deriving sexp]

type k =
  | Manual
  | Automatic of float
[@@deriving sexp]

type cx =
  | Always
  | Growth of float
[@@deriving sexp]

let default_delta = Merging 0.01

let default_k = Automatic 25.0

let default_cx = Growth 1.1

type settings = {
  delta: delta;
  k: k;
  cx: cx;
  k_delta: float option;
}

type centroid = {
  mean: float;
  cumn: float;
  mean_cumn: float;
  n: float;
}

let empty_centroid = { mean = 0.0; n = 0.0; cumn = 0.0; mean_cumn = 0.0 }

type stats = {
  cumulates_count: int;
  compress_count: int;
  auto_compress_count: int;
}
[@@deriving sexp]

let empty_stats = { cumulates_count = 0; compress_count = 0; auto_compress_count = 0 }

type info = {
  count: int;
  size: int;
  cumulates_count: int;
  compress_count: int;
  auto_compress_count: int;
}
[@@deriving sexp]

module type M = sig
  type 'a t

  val empty : 'a t

  module Map : sig
    val is_empty : 'a t -> bool

    val length : 'a t -> int

    val min_elt : 'a t -> (float * 'a) option

    val max_elt : 'a t -> (float * 'a) option

    val iter : 'a t -> f:('a -> unit) -> unit

    val map : 'a t -> f:('a -> 'b) -> 'b t

    val fold : 'a t -> init:'b -> f:(key:float -> data:'a -> 'b -> 'b) -> 'b

    val fold_right : 'a t -> init:'b -> f:(key:float -> data:'a -> 'b -> 'b) -> 'b

    val binary_search :
      'a t ->
      compare:(key:float -> data:'a -> float -> int) ->
      Binary_searchable.Which_target_by_key.t ->
      float ->
      (float * 'a) option

    val add_exn : 'a t -> key:float -> data:'a -> 'a t

    val remove : 'a t -> float -> 'a t
  end
end

module Make (M : M) = struct
  open Float

  type t = {
    settings: settings;
    centroids: centroid M.t;
    mutable min: centroid option;
    mutable max: centroid option;
    n: float;
    last_cumulate: float;
    stats: stats;
  }

  let get_min = function
  | { min = Some _ as x; _ } -> x
  | { min = None; n = 0.0; _ } -> None
  | { min = None; _ } as td ->
    let min = M.Map.min_elt td.centroids >>| snd in
    td.min <- min;
    min

  let get_max = function
  | { max = Some _ as x; _ } -> x
  | { max = None; n = 0.0; _ } -> None
  | { max = None; _ } as td ->
    let max = M.Map.max_elt td.centroids >>| snd in
    td.max <- max;
    max

  let get_k_delta = function
  | Automatic k, Merging delta -> Some (k / delta)
  | _ -> None

  let create ?(delta = default_delta) ?(k = default_k) ?(cx = default_cx) () =
    let k =
      match k with
      | Manual -> k
      | Automatic x when is_positive x -> k
      | Automatic 0.0 ->
        invalid_arg
          "TDigest.create: k parameter cannot be zero, set to Tdigest.Manual to disable automatic \
           compression."
      | Automatic x -> invalid_argf "TDigest k parameter must be positive, but was %f" x ()
    in
    let cx =
      match cx with
      | Always -> cx
      | Growth x when is_positive x -> cx
      | Growth 0.0 ->
        invalid_arg
          "TDigest.create: cx parameter cannot be zero, set to Tdigest.Always to disable caching of \
           cumulative totals."
      | Growth x -> invalid_argf "TDigest.create: cx parameter must be positive, but was %f" x ()
    in
    {
      settings = { delta; k; cx; k_delta = get_k_delta (k, delta) };
      centroids = M.empty;
      min = None;
      max = None;
      n = 0.0;
      last_cumulate = 0.0;
      stats = empty_stats;
    }

  let is_empty { centroids; _ } = M.Map.is_empty centroids

  let info { centroids; n; stats; _ } =
    {
      count = to_int n;
      size = M.Map.length centroids;
      cumulates_count = stats.cumulates_count;
      compress_count = stats.compress_count;
      auto_compress_count = stats.auto_compress_count;
    }

  let find_nearest td mean =
    let gt = ref None in
    let lte =
      M.Map.binary_search td.centroids `Last_less_than_or_equal_to mean
        ~compare:(fun ~key ~data against ->
        let x = compare key against in
        if Int.is_positive x then gt := Some (key, data);
        x )
    in
    match lte with
    | Some (k, v) when mean = k -> Some v
    | Some (k1, v1) -> (
      match !gt with
      | None -> None
      | Some (k2, _v2) when mean - k1 < k2 - mean -> Some v1
      | Some (_k2, v2) -> Some v2 )
    | None -> None

  let use_cache = function
  | { n; last_cumulate; settings = { cx = Growth cx; _ }; _ } when cx > n / last_cumulate -> true
  | _ -> false

  let cumulate td ~exact =
    if td.n = td.last_cumulate || ((not exact) && use_cache td)
    then td
    else (
      let cumn = ref 0.0 in
      let centroids =
        M.Map.map td.centroids ~f:(fun data ->
          let updated = { data with mean_cumn = !cumn + (data.n / 2.); cumn = !cumn + data.n } in
          cumn := updated.cumn;
          updated )
      in
      {
        td with
        centroids;
        min = None;
        max = None;
        n = !cumn;
        last_cumulate = !cumn;
        stats = { td.stats with cumulates_count = succ td.stats.cumulates_count };
      } )

  let new_bounds ({ mean; _ } as added) = function
  | { n = 0.0; min = None; max = None; _ } -> Some added, Some added
  | { min = Some existing; max; _ } when mean < existing.mean -> Some added, max
  | { min; max = Some existing; _ } when mean > existing.mean -> min, Some added
  | { min; max; _ } -> min, max

  let new_centroid td ~mean ~n ~cumn =
    let data = { mean; cumn; n; mean_cumn = n / 2. } in
    let centroids = M.Map.add_exn td.centroids ~key:mean ~data in
    let min, max = new_bounds data td in
    { td with centroids; min; max; n = td.n + n }

  let add_weight td nearest ~mean ~n =
    let updated =
      {
        mean =
          ( if nearest.mean = mean
            then nearest.mean
            else nearest.mean + (n * (mean - nearest.mean) / (nearest.n + n)) );
        cumn = nearest.cumn + n;
        mean_cumn = nearest.mean_cumn + (n / 2.);
        n = nearest.n + n;
      }
    in
    let centroids =
      M.Map.remove td.centroids nearest.mean |> M.Map.add_exn ~key:updated.mean ~data:updated
    in
    { td with centroids; n = td.n + n; min = None; max = None }

  let internal_digest td ~n ~mean =
    let nearest_is_boundary boundary nearest =
      Option.value_map boundary ~default:false ~f:(fun { mean; _ } -> mean = nearest.mean)
    in
    let td =
      match find_nearest td mean, td.settings.delta with
      | Some nearest, _ when nearest.mean = mean -> add_weight td nearest ~mean ~n
      | Some nearest, _ when nearest_is_boundary (get_min td) nearest ->
        new_centroid td ~mean ~n ~cumn:0.0
      | Some nearest, _ when nearest_is_boundary (get_max td) nearest ->
        new_centroid td ~mean ~n ~cumn:td.n
      | Some nearest, Discrete -> new_centroid td ~mean ~n ~cumn:nearest.cumn
      | Some nearest, Merging delta ->
        let p = nearest.mean_cumn / td.n in
        let max_n = round_down (4.0 * td.n * delta * p * (1.0 - p)) in
        if max_n - nearest.n >= n
        then add_weight td nearest ~mean ~n
        else new_centroid td ~mean ~n ~cumn:nearest.cumn
      | None, _ -> new_centroid td ~mean ~n ~cumn:0.0
    in
    cumulate td ~exact:false

  let weights_of_td = function
  (* n is out of sync, must check centroids *)
  | { centroids; _ } when M.Map.is_empty centroids -> [||]
  | { centroids; _ } ->
    let arr = Array.create ~len:(M.Map.length centroids) empty_centroid in
    let _i =
      M.Map.fold centroids ~init:0 ~f:(fun ~key:_ ~data i ->
        arr.(i) <- data;
        succ i )
    in
    arr

  let weights_of_table table =
    let arr = Array.create ~len:(Hashtbl.length table) empty_centroid in
    let _i =
      Hashtbl.fold table ~init:0 ~f:(fun ~key:mean ~data:n i ->
        arr.(i) <- { empty_centroid with mean; n };
        succ i )
    in
    arr

  let rebuild ~auto settings (stats : stats) arr =
    Array.permute arr;
    let blank =
      {
        settings;
        centroids = M.empty;
        min = None;
        max = None;
        n = 0.0;
        last_cumulate = 0.0;
        stats =
          {
            stats with
            compress_count = succ stats.compress_count;
            auto_compress_count = (if auto then succ else Fn.id) stats.auto_compress_count;
          };
      }
    in
    let td = Array.fold arr ~init:blank ~f:(fun acc { mean; n; _ } -> internal_digest acc ~n ~mean) in
    cumulate td ~exact:true

  let digest ?(n = 1) td ~mean =
    let td = internal_digest td ~n:(of_int n) ~mean in
    match td.settings with
    | { k_delta = Some kd; _ } when M.Map.length td.centroids |> of_int > kd ->
      rebuild ~auto:true td.settings td.stats (weights_of_td td)
    | _ -> td

  let add ?(n = 1) ~data td =
    if Int.(n <= 0) then invalid_arg "Tdigest.add: n <= 0";
    digest td ~n ~mean:data

  let add_list ?(n = 1) xs td =
    if Int.(n <= 0) then invalid_arg "Tdigest.add_list: n <= 0";
    List.fold xs ~init:td ~f:(fun acc mean -> digest acc ~n ~mean)

  let compress ?delta td =
    match delta with
    | None -> rebuild ~auto:false td.settings td.stats (weights_of_td td)
    | Some delta ->
      let settings = td.settings in
      let updated = rebuild ~auto:false { td.settings with delta } td.stats (weights_of_td td) in
      { updated with settings }

  let to_string td =
    let buf = Bytes.create (M.Map.length td.centroids |> Int.( * ) 16) in
    let add_float pos ~data:f =
      let v = Int64.bits_of_float f in
      let rec loop pos = function
        | 8 -> pos
        | i ->
          Bytes.set buf pos Int64.(255L land shift_right v Int.(i * 8) |> to_int_exn |> Char.of_int_exn);
          (loop [@tailcall]) (succ pos) (succ i)
      in
      loop pos 0
    in
    let _pos =
      M.Map.fold td.centroids ~init:0 ~f:(fun ~key:_ ~data:{ mean; n; _ } pos ->
        add_float pos ~data:mean |> add_float ~data:n )
    in
    td, Bytes.unsafe_to_string ~no_mutation_while_string_reachable:buf

  let parse_float str pos =
    let open Int64 in
    let next off = String.get str Int.(pos + off) |> Char.to_int |> of_int_exn in
    (String.get str pos |> Char.to_int |> of_int_exn)
    lor shift_left (next 1) 8
    lor shift_left (next 2) 16
    lor shift_left (next 3) 24
    lor shift_left (next 4) 32
    lor shift_left (next 5) 40
    lor shift_left (next 6) 48
    lor shift_left (next 7) 56
    |> float_of_bits

  let of_string ?(delta = default_delta) ?(k = default_k) ?(cx = default_cx) str =
    if Int.(String.length str % 16 <> 0) then invalid_arg "Tdigest.of_string: invalid string length";
    let settings = { delta; k; cx; k_delta = get_k_delta (k, delta) } in
    let table = Table.create () in
    let rec loop = function
      | pos when Int.(pos = String.length str) -> ()
      | pos ->
        let mean = parse_float str pos in
        let n = parse_float str Int.(pos + 8) in
        Hashtbl.update table mean ~f:(Option.value_map ~default:n ~f:(( + ) n));
        (loop [@tailcall]) Int.(pos + 16)
    in
    loop 0;
    weights_of_table table |> rebuild ~auto:true settings empty_stats

  module Export = struct
    type td_t = t

    type settings = {
      delta: delta;
      k: k;
      cx: cx;
    }
    [@@deriving sexp]

    type t = {
      settings: settings;
      state: string;
      stats: stats;
    }
    [@@deriving sexp]

    let create ({ settings = { delta; k; cx; _ }; stats; _ } as td : td_t) =
      { settings = { delta; k; cx }; state = to_string td |> snd; stats }
  end

  let sexp_of_t td = Export.create td |> [%sexp_of: Export.t]

  let t_of_sexp sexp =
    let Export.{ settings = { delta; k; cx }; state; stats } = [%of_sexp: Export.t] sexp in
    { (of_string ~delta ~k ~cx state) with stats }

  let merge ?(delta = default_delta) ?(k = default_k) ?(cx = default_cx) tds =
    let settings = { delta; k; cx; k_delta = get_k_delta (k, delta) } in
    let table = Table.create () in
    List.iter tds ~f:(fun { centroids; _ } ->
      M.Map.iter centroids ~f:(fun { mean; n; _ } ->
        Hashtbl.update table mean ~f:(Option.value_map ~default:n ~f:(( + ) n)) ) );
    weights_of_table table |> rebuild ~auto:true settings empty_stats

  type bounds =
    | Neither
    | Both of centroid * centroid
    | Equal of centroid
    | Lower of centroid
    | Upper of centroid

  let bounds td needle lens =
    let gt = ref None in
    let lte =
      M.Map.binary_search td.centroids `Last_less_than_or_equal_to needle
        ~compare:(fun ~key ~data against ->
        let x = compare (lens data) against in
        if Int.is_positive x then gt := Some (key, data);
        x )
    in
    match lte with
    | Some (_k, v) when lens v = needle -> Equal v
    | Some (_k1, v1) -> (
      match !gt with
      | Some (_k2, v2) -> Both (v1, v2)
      | None -> Lower v1 )
    | None -> (
      match get_min td with
      | Some v -> Upper v
      | None -> Neither )

  let percentile td p =
    match td with
    | { n = 0.0; _ } -> td, None
    | td -> (
      let td = cumulate td ~exact:true in
      let h = td.n * p in
      match bounds td h (fun { mean_cumn; _ } -> mean_cumn), td.settings.delta with
      | Lower x, _
       |Upper x, _
       |Equal x, _ ->
        td, Some x.mean
      | Both (lower, upper), Merging _ ->
        let num =
          lower.mean
          + ((h - lower.mean_cumn) * (upper.mean - lower.mean) / (upper.mean_cumn - lower.mean_cumn))
        in
        td, Some num
      | Both (lower, _upper), Discrete when h <= lower.cumn -> td, Some lower.mean
      | Both (_lower, upper), Discrete -> td, Some upper.mean
      | Neither, _ -> td, None )

  let percentiles td ps = List.fold_map ps ~init:td ~f:percentile

  let p_rank td p =
    match get_min td with
    | None -> td, None
    | Some v when p < v.mean -> td, Some 0.0
    | Some _ -> (
      match get_max td with
      | None -> td, None
      | Some v when p > v.mean -> td, Some 1.0
      | Some _ -> (
        let td = cumulate td ~exact:true in
        match bounds td p (fun { mean; _ } -> mean), td.settings.delta with
        | Both (lower, _), Discrete
         |Lower lower, Discrete
         |Equal lower, Discrete ->
          td, Some (lower.cumn / td.n)
        | Neither, Discrete
         |Upper _, Discrete ->
          td, None
        | Equal x, Merging _ -> td, Some (x.mean_cumn / td.n)
        | Both (lower, upper), Merging _ ->
          let num =
            lower.mean_cumn
            + ((p - lower.mean) * (upper.mean_cumn - lower.mean_cumn) / (upper.mean - lower.mean))
          in
          td, Some (num / td.n)
        | _, Merging _ -> td, None ) )

  let p_ranks td ps = List.fold_map ps ~init:td ~f:p_rank

  module Private = struct
    let centroids td =
      M.Map.fold_right td.centroids ~init:[] ~f:(fun ~key:_ ~data:{ mean; n; _ } acc -> (mean, n) :: acc)

    let min td = get_min td >>| fun { mean; n; _ } -> mean, n

    let max td = get_max td >>| fun { mean; n; _ } -> mean, n
  end
end

module M = Make (struct
  module Map = Map

  type 'a t = 'a Float.Map.t

  let empty = Float.Map.empty
end)

module Marshallable = Make (struct
  module Map = Map.Make_tree (Float)

  type 'a t = 'a Map.t

  let empty = Map.empty
end)

include M