1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
open Tezos_hacl
let add_path r n = r ^ "/" ^ n
let read_enc filepath filename enc =
let inc = open_in (add_path filepath filename) in
let file_size = In_channel.length inc |> Int64.to_int in
let data = Stdlib.really_input_string inc file_size in
close_in inc ;
match Data_encoding.Json.from_string data with
| Ok json -> Data_encoding.Json.destruct enc json
| Error _ -> raise (Invalid_argument "Could not read file")
let write_enc filepath filename enc data =
let outc = open_out (add_path filepath filename) in
Printf.fprintf outc "%s" Data_encoding.Json.(construct enc data |> to_string) ;
close_out outc
type symmetric_key = Crypto_box.Secretbox.key
type ciphertext = {nonce : Crypto_box.nonce; payload : bytes}
let ciphertext_encoding =
let open Data_encoding in
def "timelock.ciphertext"
@@ conv_with_guard
(fun ciphertext -> (ciphertext.nonce, ciphertext.payload))
(fun (nonce, payload) ->
if Bytes.length payload <= Crypto_box.tag_length then
Error "The ciphertext has a negative size"
else Ok {nonce; payload})
(obj2
(req "timelock.nonce" Crypto_box.nonce_encoding)
(req "timelock.payload" bytes))
let encrypt symmetric_key plaintext =
let nonce = Crypto_box.random_nonce () in
{
nonce;
payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
}
let decrypt symmetric_key ciphertext =
Crypto_box.Secretbox.secretbox_open
symmetric_key
ciphertext.payload
ciphertext.nonce
type rsa_public = Z.t
let rsa2048 =
Z.of_string
"25195908475657893494027183240048398571429282126204032027777137836043662020707595556264018525880784406918290641249515082189298559149176184502808489120072844992687392807287776735971418347270261896375014971824691165077613379859095700097330459748808428401797429100642458691817195118746121515172654632282216869987549182422433637259085141865462043576798423387184774447920739934236584823824281198163815010674810451660377306056201619676256133844143603833904414952634432190114657544454178424020924616515723350778707749817125772467962926386356373289912154831438167899885040445364023527381951378636564391212010397122822120720357"
let size_rsa2048 = 2048
let rsa_public_encoding =
let open Data_encoding in
def "timelock.rsa2048"
@@ conv_with_guard
(fun rsa_public -> rsa_public)
(fun rsa_public ->
if Z.equal rsa_public rsa2048 then Ok rsa_public
else Error "not RSA2048 rsa2048")
(obj1 (req "rsa_public" n))
type locked_value = Z.t
let to_locked_value_opt x =
let y = Z.of_string x in
if y >= rsa2048 then None else Some y
let to_locked_value_unsafe = Z.of_string
type unlocked_value = Z.t
type vdf_proof = Z.t
type vdf_tuple = {
locked_value : locked_value;
unlocked_value : unlocked_value;
vdf_proof : vdf_proof;
}
let vdf_tuple_encoding =
let open Data_encoding in
def "timelock.vdf_tuple"
@@ conv_with_guard
(fun vdf_tuple ->
(vdf_tuple.locked_value, vdf_tuple.unlocked_value, vdf_tuple.vdf_proof))
(fun (locked_value, unlocked_value, vdf_proof) ->
Ok {locked_value; unlocked_value; vdf_proof})
(obj3
(req "locked_value" n)
(req "unlocked_value" n)
(req "vdf_proof" n))
let to_vdf_tuple_unsafe x y z =
{
locked_value = Z.of_string x;
unlocked_value = Z.of_string y;
vdf_proof = Z.of_string z;
}
type timelock_proof = {vdf_tuple : vdf_tuple; nonce : Z.t}
let proof_encoding =
let open Data_encoding in
def "timelock.proof"
@@ conv_with_guard
(fun proof -> (proof.vdf_tuple, proof.nonce))
(fun (vdf_tuple, nonce) -> Ok {vdf_tuple; nonce})
(obj2 (req "vdf_tuple" vdf_tuple_encoding) (req "nonce" n))
let random_z size = Hacl.Rand.gen size |> Bytes.to_string |> Z.of_bits
let gen_locked_value_unsafe rsa_public =
let size_rsa2048 = Z.to_bits rsa_public |> String.length in
Z.erem (random_z ((size_rsa2048 / 8) + 16)) rsa_public
let gen_locked_value_opt rsa_public =
if not @@ Z.equal rsa_public rsa2048 then None
else Some (gen_locked_value_unsafe rsa_public)
let hash_to_prime rsa_public ~time value key =
let personalization = Bytes.of_string "\032" in
let s =
String.concat
"\xff\x00\xff\x00\xff\x00\xff\x00"
(Int.to_string time :: List.map Z.to_bits [rsa_public; value; key])
in
let (Hacl.Blake2b.Hash hash_result) =
Hacl.Blake2b.direct ~key:personalization (Bytes.of_string s) 32
in
Z.(nextprime (of_bits (Bytes.to_string hash_result)))
let prove_wesolowski rsa_public ~time locked_value unlocked_value =
let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
let exponent = Z.(pow (of_int 2) time / l) in
Z.powm locked_value exponent rsa_public
let prove rsa_public ~time locked_value unlocked_value =
let vdf_proof =
prove_wesolowski rsa_public ~time locked_value unlocked_value
in
let vdf_tuple = {locked_value; unlocked_value; vdf_proof} in
{vdf_tuple; nonce = Z.one}
let verify_wesolowski rsa_public ~time vdf_tuple =
let l =
hash_to_prime
rsa_public
~time
vdf_tuple.locked_value
vdf_tuple.unlocked_value
in
let r = Z.(powm (of_int 2) (Z.of_int time) l) in
vdf_tuple.unlocked_value
= Z.(
powm vdf_tuple.vdf_proof l rsa_public
* powm vdf_tuple.locked_value r rsa_public
mod rsa_public)
let to_vdf_tuple_opt rsa_public ~time x y z =
let tuple = to_vdf_tuple_unsafe x y z in
let x, y, z = Z.(of_string x, of_string y, of_string z) in
let b_group = x < rsa_public && y < rsa_public && z < rsa_public in
let b_weso = verify_wesolowski rsa_public ~time tuple in
if b_group && b_weso then Some tuple else None
let verify rsa_public ~time locked_value proof =
let randomized_challenge =
Z.powm proof.vdf_tuple.locked_value proof.nonce rsa_public
in
let b_exp = Z.(equal randomized_challenge locked_value) in
let b_weso = verify_wesolowski rsa_public ~time proof.vdf_tuple in
b_exp && b_weso
let rec unlock_timelock rsa_public ~time locked_value =
if time = 0 then locked_value
else
unlock_timelock
rsa_public
~time:Int.(pred time)
Z.(locked_value * locked_value mod rsa_public)
let unlock_and_prove rsa_public ~time locked_value =
let unlocked_value = unlock_timelock rsa_public ~time locked_value in
prove rsa_public ~time locked_value unlocked_value
let precompute_timelock ?(locked_value = None) ?(precompute_path = None) ~time
() =
let locked_value =
match locked_value with
| None -> gen_locked_value_unsafe rsa2048
| Some c -> Z.(c mod rsa2048)
in
let compute_tuple () =
let unlocked_value = unlock_timelock rsa2048 ~time locked_value in
(prove rsa2048 ~time locked_value unlocked_value).vdf_tuple
in
match precompute_path with
| None -> compute_tuple ()
| Some filepath ->
let brsa = Z.to_bits rsa2048 in
let file_prefix = Blake2B.(hash_string [brsa] |> to_hex) |> Hex.show in
let filename = file_prefix ^ "_" ^ string_of_int time ^ ".json" in
let file_exists = Sys.file_exists (add_path filepath filename) in
if file_exists then read_enc filepath filename vdf_tuple_encoding
else
let precomputed = compute_tuple () in
write_enc filepath filename vdf_tuple_encoding precomputed ;
precomputed
let proof_of_vdf_tuple rsa_public ~time vdf_tuple =
if
Z.compare vdf_tuple.locked_value rsa_public > 0
|| Z.compare vdf_tuple.unlocked_value rsa_public > 0
then
raise
(Invalid_argument "Invalid timelock tuple, its elements are not in group.") ;
if verify_wesolowski rsa_public ~time vdf_tuple then
let nonce = random_z (128 + (Z.to_bits rsa_public |> String.length)) in
let randomized_locked_value =
Z.powm vdf_tuple.locked_value nonce rsa_public
in
let proof = {vdf_tuple; nonce} in
(randomized_locked_value, proof)
else raise (Invalid_argument "Timelock tuple verification failed.")
let timelock_proof_to_symmetric_key rsa_public proof =
let updated = Z.powm proof.vdf_tuple.unlocked_value proof.nonce rsa_public in
let kdf_key = "Tezoskdftimelockv1" in
let to_hash = Z.to_string updated in
let hash = Blake2B.(to_bytes @@ hash_string ~key:kdf_key [to_hash]) in
Crypto_box.Secretbox.unsafe_of_bytes hash
let locked_value_to_symmetric_key rsa_public ~time locked_value proof =
if verify rsa_public ~time locked_value proof then
Some (timelock_proof_to_symmetric_key rsa_public proof)
else None
type chest = {
locked_value : locked_value;
rsa_public : rsa_public;
ciphertext : ciphertext;
}
let chest_encoding =
let open Data_encoding in
def "timelock.chest"
@@ conv_with_guard
(fun chest -> (chest.locked_value, chest.rsa_public, chest.ciphertext))
(fun (locked_value, rsa_public, ciphertext) ->
if Z.Compare.(locked_value < Z.zero || locked_value >= rsa_public) then
Error "locked value is not in the rsa group"
else if not @@ Z.equal rsa_public rsa2048 then
Error "not RSA2048 rsa2048"
else Ok {locked_value; rsa_public; ciphertext})
(obj3
(req "locked_value" n)
(req "rsa_public" n)
(req "ciphertext" ciphertext_encoding))
type chest_key = timelock_proof
let chest_key_encoding = proof_encoding
type opening_result = Correct of Bytes.t | Bogus_cipher | Bogus_opening
let create_chest_and_chest_key ?(precompute_path = None) ~payload ~time () =
let locked_value, proof =
let vdf_tuple = precompute_timelock ~time ~precompute_path () in
proof_of_vdf_tuple rsa2048 ~time vdf_tuple
in
let sym_key = timelock_proof_to_symmetric_key rsa2048 proof in
let ciphertext = encrypt sym_key payload in
({locked_value; rsa_public = rsa2048; ciphertext}, proof)
let create_chest_key chest ~time =
unlock_and_prove chest.rsa_public ~time chest.locked_value
let get_plaintext_size chest =
Bytes.length chest.ciphertext.payload - Crypto_box.tag_length
let open_chest chest chest_key ~time =
if time < 0 then failwith "Timelock: trying to open with a negative time"
else
let sym_key_opt =
locked_value_to_symmetric_key
chest.rsa_public
~time
chest.locked_value
chest_key
in
match sym_key_opt with
| None -> Bogus_opening
| Some sym_key -> (
let plaintext_opt = decrypt sym_key chest.ciphertext in
match plaintext_opt with
| None -> Correct Bytes.empty
| Some plaintext -> Correct plaintext)
let gen_random_bytes_bench_unsafe size =
Bytes.init size (fun _ -> Char.chr (Random.int 256))
let gen_locked_value_bench_unsafe rsa_public =
let gen_random_z_unsafe size =
gen_random_bytes_bench_unsafe size |> Bytes.to_string |> Z.of_bits
in
Z.erem (gen_random_z_unsafe (size_rsa2048 / 8)) rsa_public
let encrypt_unsafe symmetric_key plaintext =
let nonce =
Data_encoding.Binary.of_bytes_exn
Crypto_box.nonce_encoding
(gen_random_bytes_bench_unsafe Crypto_box.nonce_size)
in
{
nonce;
payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
}
let chest_sampler ~rng_state ~plaintext_size ~time =
Random.set_state rng_state ;
let plaintext = gen_random_bytes_bench_unsafe plaintext_size in
let locked_value = gen_locked_value_bench_unsafe rsa2048 in
let proof = unlock_and_prove rsa2048 ~time locked_value in
let sym_key = timelock_proof_to_symmetric_key rsa2048 proof in
let ciphertext = encrypt_unsafe sym_key plaintext in
({locked_value; rsa_public = rsa2048; ciphertext}, proof)