Source file main_protocol.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
module Make (PP : Polynomial_protocol.Polynomial_protocol_sig) = struct
module Scalar = PP.PC.Scalar
module Domain = PP.PC.Polynomial.Domain
module Poly = PP.PC.Polynomial.Polynomial
module Evaluations = PP.Evaluations
module Perm : Permutation_gate.Permutation_gate_sig with module PP = PP =
Permutation_gate.Permutation_gate (PP)
module Plook : Plookup_gate.Plookup_gate_sig with module PP = PP =
Plookup_gate.Plookup_gate (PP)
module Gates = Custom_gate.Custom_gate_impl (PP)
module Commitment = PP.PC.Commitment
module Fr_generation = Fr_generation.Make (Scalar)
module SMap = SMap
exception Entry_not_in_table = Plook.Entry_not_in_table
exception Rest_not_null = Poly.Rest_not_null
exception Wrong_transcript = PP.Wrong_transcript
type scalar = Scalar.t
type proof = {
perm_and_plook : PP.PC.Commitment.t;
wires_cm : PP.PC.Commitment.t;
proof : PP.proof;
}
let proof_encoding : proof Data_encoding.t =
Data_encoding.(
conv
(fun { perm_and_plook; wires_cm; proof } ->
(perm_and_plook, wires_cm, proof))
(fun (perm_and_plook, wires_cm, proof) ->
{ perm_and_plook; wires_cm; proof })
(obj3
(req "perm_and_plook" PP.PC.Commitment.encoding)
(req "wires_cm" PP.PC.Commitment.encoding)
(req "proof" PP.proof_encoding)))
type transcript = PP.transcript
let scalar_encoding = Encodings.fr_encoding
let transcript_encoding : transcript Data_encoding.t = PP.transcript_encoding
type prover_inputs = { public : scalar array; witness : scalar array }
let sep = SMap.Aggregation.sep
module IntSet = Set.Make (Int)
module IntMap = Map.Make (Int)
module Partition = struct
type t = IntSet.t IntMap.t
let build_partition wire_indices =
let add_IntMap i e map =
let set = Option.value (IntMap.find_opt i map) ~default:IntSet.empty in
IntMap.add i (IntSet.add e set) map
in
let idxs = List.map snd (SMap.bindings wire_indices) in
let map, _i =
List.fold_left
(fun (int_map, i) wire_indices_i ->
let new_map, j =
Array.fold_left
(fun (map, j) h ->
let new_map = add_IntMap h (i + j) map in
(new_map, j + 1))
(int_map, 0) wire_indices_i
in
(new_map, i + j))
(IntMap.empty, 0) idxs
in
map
let partition_to_permutation partition =
let kn =
IntMap.fold (fun _ set sum -> sum + IntSet.cardinal set) partition 0
in
let permutation = Array.make kn (-1) in
let set_cycle_in_permutation _idx cycle =
match IntSet.cardinal cycle with
| 0 -> failwith "cycles_to_permutation_map_set : empty cycle"
| 1 ->
let e = IntSet.choose cycle in
permutation.(e) <- e
| n ->
let first = IntSet.min_elt cycle in
let aux e (i, prec) =
if i = 0 then (i + 1, e)
else if i < n - 1 then (
permutation.(prec) <- e;
(i + 1, e))
else (
permutation.(prec) <- e;
permutation.(e) <- first;
(i + 1, e))
in
ignore @@ IntSet.fold aux cycle (0, -1)
in
IntMap.iter set_cycle_in_permutation partition;
if Array.mem (-1) permutation then
failwith "cycles is not a 'partition' of kn"
else permutation
end
let module_list =
[
(module Gates.Constant_gate : Gates.Gate_base_sig);
(module Gates.Public_gate);
(module Gates.AddLeft_gate);
(module Gates.AddRight_gate);
(module Gates.AddOutput_gate);
(module Gates.AddNextLeft_gate);
(module Gates.AddNextRight_gate);
(module Gates.AddNextOutput_gate);
(module Gates.Multiplication_gate);
(module Gates.X5_gate);
(module Gates.AddWeierstrass_gate);
(module Gates.AddEdwards_gate);
]
let select_modules gate_names =
let to_q_label m =
let module M = (val m : Gates.Gate_base_sig) in
M.q_label
in
List.filter (fun m -> SMap.mem (to_q_label m) gate_names) module_list
let get_wires_names nb_wires =
let alphabet = "abcdefghijklmnopqrstuvwxyz" in
Array.init nb_wires (fun i -> Char.escaped alphabet.[i])
let hash_public_inputs transcript public_inputs =
let open Utils.Hash in
let st = init () in
update st transcript;
SMap.iter
(fun key (elt : scalar array list) ->
update st (Bytes.of_string key);
List.iter (Array.iter (fun s -> update st (Scalar.to_bytes s))) elt)
public_inputs;
finish st
module Prover = struct
type prover_common_pp = {
n : int;
domain : Domain.t;
pp_public_parameters : PP.prover_public_parameters;
evaluations : Evaluations.t SMap.t;
common_keys : string list;
}
type prover_circuit_pp = {
circuit_size : int;
nb_wires : int;
gates : Scalar.t array SMap.t;
tables : Scalar.t array list;
wires : int array SMap.t;
permutation : int array;
evaluations : Evaluations.t SMap.t;
alpha : Scalar.t;
ultra : bool;
}
let enforce_wire_values wire_indices wire_values =
SMap.map
(fun l -> Array.map (fun index -> wire_values.(index)) l)
wire_indices
let compute_wire_polynomials ~zero_knowledge ~module_list n domain wires =
let unblinded_res =
try SMap.map (fun w -> Evaluations.interpolation_fft2 domain w) wires
with Invalid_argument _ ->
failwith
"Compute_wire_polynomial : x's length does not match with circuit. \
Either your witness is too short, or some indexes in a, b or c \
are greater than the witness size."
in
if zero_knowledge then
let nb_blinds_map =
Gates.Gate_aggregator.aggregate_blinds ~module_list
in
let polys_and_blinds =
SMap.mapi
(fun name f ->
let nb_blinds =
1 + Option.value ~default:0 (SMap.find_opt name nb_blinds_map)
in
Poly.blind ~nb_blinds n f)
unblinded_res
in
(SMap.map fst polys_and_blinds, Some (SMap.map snd polys_and_blinds))
else (unblinded_res, None)
type wires_info = {
wires : scalar array SMap.t;
f_wires_map : Evaluations.polynomial SMap.t;
f_blinds_map : Evaluations.polynomial SMap.t option;
wires_values : scalar array;
wires_indices : int array SMap.t;
}
let build_wires_map ?(zero_knowledge = true) common_pp circuits_map
circuit_name inputs =
let pp : prover_circuit_pp = SMap.find circuit_name circuits_map in
let module_list = select_modules pp.gates in
List.map
(fun input ->
let wires_values = input.witness in
let wires_indices = pp.wires in
let wires = enforce_wire_values wires_indices wires_values in
let f_wires_map, f_blinds_map =
compute_wire_polynomials ~zero_knowledge ~module_list common_pp.n
common_pp.domain wires
in
( f_wires_map,
{ wires; f_wires_map; f_blinds_map; wires_values; wires_indices } ))
inputs
|> List.split
let build_all_f_wires_map ~zero_knowledge common_pp circuits_map inputs_map
=
let wires =
SMap.mapi
(build_wires_map ~zero_knowledge common_pp circuits_map)
inputs_map
in
(SMap.map fst wires, SMap.map snd wires)
let build_aggregated_wires_map ~zero_knowledge delta common_pp circuits_map
wires_map circuit_name batched_witness =
let pp : prover_circuit_pp = SMap.find circuit_name circuits_map in
let ocaml_batched_witness = Evaluations.to_array batched_witness in
let wires = enforce_wire_values pp.wires ocaml_batched_witness in
let batched_polys =
fst
@@ compute_wire_polynomials ~zero_knowledge:false ~module_list:[]
common_pp.n common_pp.domain wires
in
if not zero_knowledge then batched_polys
else
let wires = SMap.find circuit_name wires_map in
let batched_blinds =
let blinds = List.map (fun w -> Option.get w.f_blinds_map) wires in
SMap.map_list_to_list_map blinds |> SMap.map (Poly.batch delta)
in
let zh =
Poly.of_coefficients
[ (Scalar.one, common_pp.n); (Scalar.negate Scalar.one, 0) ]
in
SMap.mapi
(fun name f ->
let b = SMap.find name batched_blinds in
Poly.(f + (b * zh)))
batched_polys
let build_all_aggregated_wires_map ~zero_knowledge delta common_pp
circuits_map f_wires_map_list_map wires_map batched_witness_map =
SMap.mapi
(fun circuit_name map_list ->
let logn = Z.log2 @@ Z.of_int common_pp.n in
if List.compare_length_with map_list logn > 0 then
let batched_witness = SMap.find circuit_name batched_witness_map in
build_aggregated_wires_map ~zero_knowledge delta common_pp
circuits_map wires_map circuit_name batched_witness
else
SMap.map (Poly.batch delta) @@ SMap.map_list_to_list_map map_list)
f_wires_map_list_map
let add_prefix_to_query ~prefix (query : PP.prover_query) =
let precomputed_polys =
SMap.bindings query.precomputed_polys
|> List.map (fun (key, x) -> (prefix ^ key, x))
|> SMap.of_list
in
{ query with precomputed_polys }
let build_query (common_pp : prover_common_pp) beta_plonk gamma_plonk
beta_plookup gamma_plookup generator circuits_map inputs_map
f_perm_map_map circuit_name f_map_list =
let pp = SMap.find circuit_name circuits_map in
let inputs = SMap.find circuit_name inputs_map in
let f_perm_map = SMap.find circuit_name f_perm_map_map in
let domain_evals = Evaluations.get_domain common_pp.evaluations in
let g_evals = SMap.union_disjoint common_pp.evaluations pp.evaluations in
let = if circuit_name = "" then "" else circuit_name ^ sep in
let query_list =
List.map2
(fun f_map inputs ->
let evaluations =
PP.Evaluations.compute_evaluations ~domain:domain_evals f_map
|> SMap.union_disjoint g_evals
in
let plookup_query =
if pp.ultra then
Plook.prover_query ~prefix:extra_prefix
~wires_name:(get_wires_names pp.nb_wires)
~generator ~alpha:pp.alpha ~beta:beta_plookup
~gamma:gamma_plookup ~f_map ~ultra:pp.ultra ~evaluations
~n:common_pp.n ()
else PP.empty_prover_query
in
let gates_queries =
Gates.Gate_aggregator.aggregate_prover_queries
~prefix:extra_prefix ~module_list:(select_modules pp.gates)
~public_inputs:inputs.public ~domain:common_pp.domain
~evaluations ()
in
let queries = [ plookup_query; gates_queries ] in
PP.merge_prover_queries queries)
f_map_list inputs
in
let perm_query =
let evaluations =
PP.Evaluations.compute_evaluations ~domain:domain_evals f_perm_map
|> SMap.union_disjoint g_evals
in
Perm.prover_query ~prefix:extra_prefix
~wires_name:
(get_wires_names pp.nb_wires |> Array.map String.capitalize_ascii)
~generator ~beta:beta_plonk ~gamma:gamma_plonk ~evaluations
~n:common_pp.n ()
in
let v_map = PP.((List.hd query_list : PP.prover_query).v_map) in
let common_keys =
PP.update_common_keys_with_v_map common_pp.common_keys ~v_map
in
let nb_proofs = List.length inputs in
let len_prefix = SMap.Aggregation.compute_len_prefix ~nb_proofs in
let aggregated_query =
PP.merge_equal_set_of_keys_prover_queries ~extra_prefix ~len_prefix
~common_keys query_list
in
let perm_query = add_prefix_to_query ~prefix:extra_prefix perm_query in
PP.merge_prover_queries [ perm_query; aggregated_query ]
let build_all_queries (common_pp : prover_common_pp) beta_plonk gamma_plonk
beta_plookup gamma_plookup circuits_map inputs_map f_perm_map_map
f_map_list_map =
let generator = Domain.get common_pp.domain 1 in
let map =
SMap.mapi
(build_query common_pp beta_plonk gamma_plonk beta_plookup
gamma_plookup generator circuits_map inputs_map f_perm_map_map)
f_map_list_map
in
PP.merge_prover_queries (List.map snd (SMap.bindings map))
let build_f_map_evaluation_perm ~zero_knowledge (cpp : prover_common_pp)
delta beta_plonk gamma_plonk circuits_map circuit_name wires =
let pp = SMap.find circuit_name circuits_map in
let batched_witness =
let deltas =
Fr_generation.powers (List.length wires) delta |> Array.to_list
in
let wire_values_c_list =
List.map
(fun wires_info ->
let degree = Array.length wires_info.wires_values - 1 in
Evaluations.make_evaluation (degree, wires_info.wires_values))
wires
in
Evaluations.linear_c ~evaluations:wire_values_c_list
~linear_coeffs:deltas ()
in
let zs =
let indices = (List.hd wires).wires_indices in
Perm.f_map_contribution ~permutation:pp.permutation
~values:batched_witness ~indices ~beta:beta_plonk ~gamma:gamma_plonk
~domain:cpp.domain
in
let zs =
if zero_knowledge then
SMap.map (fun f -> Poly.blind ~nb_blinds:3 cpp.n f |> fst) zs
else zs
in
(zs, batched_witness)
let build_all_f_map_evaluation_perm ~zero_knowledge pp delta beta_plonk
gamma_plonk circuits_map wires_map =
SMap.mapi
(build_f_map_evaluation_perm ~zero_knowledge pp delta beta_plonk
gamma_plonk circuits_map)
wires_map
let build_f_map_evaluation_plook ~zero_knowledge (cpp : prover_common_pp)
beta_plookup gamma_plookup circuits_map circuit_name wires =
let pp = SMap.find circuit_name circuits_map in
List.map
(fun wires_info ->
let plook_map =
if pp.ultra then
Plook.f_map_contribution ~wires:wires_info.wires ~gates:pp.gates
~tables:pp.tables ~alpha:pp.alpha ~beta:beta_plookup
~gamma:gamma_plookup ~domain:cpp.domain ~size_domain:cpp.n
~circuit_size:pp.circuit_size
else SMap.empty
in
if zero_knowledge then
SMap.map (fun f -> Poly.blind ~nb_blinds:3 cpp.n f |> fst) plook_map
else plook_map)
wires
let build_all_f_map_evaluation_plook ~zero_knowledge pp beta_plookup
gamma_plookup circuits_map wires_map =
SMap.mapi
(build_f_map_evaluation_plook ~zero_knowledge pp beta_plookup
gamma_plookup circuits_map)
wires_map
let gather_maps map_list_map =
SMap.bindings map_list_map
|> List.map (fun (circuit_name, map_list) ->
let nb_proofs = List.length map_list in
let len_prefix = SMap.Aggregation.compute_len_prefix ~nb_proofs in
let =
if circuit_name = "" then ""
else circuit_name ^ SMap.Aggregation.sep
in
SMap.Aggregation.merge_equal_set_of_keys ~extra_prefix ~len_prefix
map_list)
|> SMap.union_disjoint_list
let gather_maps_perm map_map =
SMap.bindings map_map
|> List.map (fun (circuit_name, map) ->
let prefix =
if circuit_name = "" then ""
else circuit_name ^ SMap.Aggregation.sep
in
SMap.Aggregation.prefix_map ~prefix map)
|> SMap.union_disjoint_list
let prove_circuits_with_pool ?(zero_knowledge = true)
((common_pp, circuits_map), transcript) ~inputs_map =
let transcript =
hash_public_inputs transcript
@@ SMap.map (List.map (fun sa -> sa.public)) inputs_map
in
let f_wires_map_list_map, wires_map =
build_all_f_wires_map ~zero_knowledge common_pp circuits_map inputs_map
in
let f_wires_map = gather_maps f_wires_map_list_map in
let srs = common_pp.pp_public_parameters.pc_public_parameters in
let commitment_wires, wires_prover_aux =
PP.PC.Commitment.commit srs f_wires_map
in
let transcript =
PP.PC.Commitment.expand_transcript transcript commitment_wires
in
let betas_gammas, transcript =
Fr_generation.random_fr_list transcript 5
in
let beta_plonk = List.hd betas_gammas in
let gamma_plonk = List.nth betas_gammas 1 in
let beta_plookup = List.nth betas_gammas 2 in
let gamma_plookup = List.nth betas_gammas 3 in
let delta = List.nth betas_gammas 4 in
let f_perm_and_witness_map_map =
build_all_f_map_evaluation_perm ~zero_knowledge common_pp delta
beta_plonk gamma_plonk circuits_map wires_map
in
let f_perm_map_map = SMap.map fst f_perm_and_witness_map_map in
let batched_witness_map = SMap.map snd f_perm_and_witness_map_map in
let f_perm_map = gather_maps_perm f_perm_map_map in
let f_plook_map_list_map =
build_all_f_map_evaluation_plook ~zero_knowledge common_pp beta_plookup
gamma_plookup circuits_map wires_map
in
let f_plook_map = gather_maps f_plook_map_list_map in
let f_perm_and_plook_map = SMap.union_disjoint f_perm_map f_plook_map in
let cmt_perm_and_plook, perm_and_plook_prover_aux =
PP.PC.Commitment.commit srs f_perm_and_plook_map
in
let transcript =
PP.PC.Commitment.expand_transcript transcript cmt_perm_and_plook
in
let batched_f_wires_map_map =
build_all_aggregated_wires_map ~zero_knowledge delta common_pp
circuits_map f_wires_map_list_map wires_map batched_witness_map
in
let updated_f_perm_map_map =
SMap.mapi
(fun circuit_name map ->
SMap.fold
(fun key f acc -> SMap.add (String.capitalize_ascii key) f acc)
(SMap.find circuit_name batched_f_wires_map_map)
map)
f_perm_map_map
in
let query =
let f_map_list_map =
SMap.union
(fun _ l1 l2 ->
Some (List.map2 (fun m1 m2 -> SMap.union_disjoint m1 m2) l1 l2))
f_wires_map_list_map f_plook_map_list_map
in
build_all_queries common_pp beta_plonk gamma_plonk beta_plookup
gamma_plookup circuits_map inputs_map updated_f_perm_map_map
f_map_list_map
in
let proof, transcript =
PP.prove common_pp.pp_public_parameters transcript
( [ f_wires_map; f_perm_and_plook_map ],
[ wires_prover_aux; perm_and_plook_prover_aux ] )
query
in
( {
perm_and_plook = cmt_perm_and_plook;
wires_cm = commitment_wires;
proof;
},
transcript )
end
module Verifier = struct
type verifier_common_pp = {
n : int;
generator : Scalar.t;
pp_public_parameters : PP.verifier_public_parameters;
query : PP.verifier_query;
common_keys : string list;
}
let verifier_common_pp_encoding : verifier_common_pp Data_encoding.t =
let open Encodings in
let open Data_encoding in
conv
(fun { n; generator; pp_public_parameters; query; common_keys } ->
(n, generator, pp_public_parameters, query, common_keys))
(fun (n, generator, pp_public_parameters, query, common_keys) ->
{ n; generator; pp_public_parameters; query; common_keys })
(obj5 (req "n" int31)
(req "generator" fr_encoding)
(req "pp_public_parameters" PP.verifier_public_parameters_encoding)
(req "query" PP.verifier_query_encoding)
(req "common_keys" (list string)))
type verifier_circuit_pp = {
gates : unit SMap.t;
nb_wires : int;
alpha : Scalar.t;
ultra : bool;
}
let verifier_circuit_pp_encoding : verifier_circuit_pp Data_encoding.t =
let open Encodings in
let open Data_encoding in
conv
(fun { gates; nb_wires; alpha; ultra } ->
(gates, nb_wires, alpha, ultra))
(fun (gates, nb_wires, alpha, ultra) ->
{ gates; nb_wires; alpha; ultra })
(obj4
(req "gates" (SMap.encoding unit))
(req "nb_wires" int31) (req "alpha" fr_encoding) (req "ultra" bool))
let build_query pp beta_plonk gamma_plonk beta_plookup gamma_plookup
circuits_map =
let query_list, gates_query, common_keys =
SMap.fold
(fun name (c, inputs, nb_proofs)
(query_list, gates_query, common_keys) ->
let prefix = if name = "" then "" else name ^ sep in
let perm_query =
Perm.verifier_query ~compute_sid:false ~prefix
~wires_name:
(get_wires_names c.nb_wires
|> Array.map String.capitalize_ascii)
~generator:pp.generator ~beta:beta_plonk ~gamma:gamma_plonk
~nb_wires:c.nb_wires ()
in
let plookup_query =
if c.ultra then
Plook.verifier_query ~prefix ~generator:pp.generator
~wires_name:(get_wires_names c.nb_wires)
~alpha:c.alpha ~beta:beta_plookup ~gamma:gamma_plookup
~ultra:c.ultra ()
else PP.empty_verifier_query
in
let common_query =
PP.merge_verifier_queries [ perm_query; plookup_query ]
in
let len_prefix = SMap.Aggregation.compute_len_prefix ~nb_proofs in
let gates_query, _ =
List.fold_left
(fun (query, i) public_inputs ->
let si = SMap.Aggregation.(int_to_string ~len_prefix i) in
let prefix = si ^ prefix in
( Gates.Gate_aggregator.add_public_inputs ~prefix
~public_inputs ~generator:pp.generator ~size_domain:pp.n
query,
i + 1 ))
(gates_query, 0) inputs
in
let new_common_keys =
let common_perm =
Perm.z :: Perm.zg
:: (get_wires_names c.nb_wires |> Array.to_list)
|> List.map String.capitalize_ascii
in
(common_perm |> List.map (fun x -> prefix ^ x))
@ PP.update_common_keys_with_v_map common_keys
~v_map:common_query.v_map
|> List.sort_uniq String.compare
in
(common_query :: query_list, gates_query, new_common_keys))
circuits_map
([], pp.query, pp.common_keys)
in
( PP.merge_verifier_queries ~common_keys (gates_query :: query_list),
common_keys )
let verify_circuits ((common_pp, circuits_map), transcript) ~public_inputs
proof =
let circuits_map =
try
SMap.mapi
(fun i pi -> (SMap.find i circuits_map, pi, List.length pi))
public_inputs
with _ ->
failwith
"Main : public inputs maps keys must be included in circuits_map's."
in
let transcript = hash_public_inputs transcript public_inputs in
let transcript =
PP.PC.Commitment.expand_transcript transcript proof.wires_cm
in
let betas_gammas, transcript =
Fr_generation.random_fr_list transcript 5
in
let beta_plonk = List.hd betas_gammas in
let gamma_plonk = List.nth betas_gammas 1 in
let beta_plookup = List.nth betas_gammas 2 in
let gamma_plookup = List.nth betas_gammas 3 in
let delta = List.nth betas_gammas 4 in
let query, common_keys =
build_query common_pp beta_plonk gamma_plonk beta_plookup gamma_plookup
circuits_map
in
let not_committed_online =
SMap.fold
(fun circuit_name (c, _, nb_proofs) acc ->
let =
if circuit_name = "" then "" else circuit_name ^ sep
in
let len_prefix = SMap.Aggregation.compute_len_prefix ~nb_proofs in
Array.fold_left
(fun acc wire_name ->
let key = extra_prefix ^ String.capitalize_ascii wire_name in
let p =
Perm.create_batched_wire_poly ~extra_prefix ~len_prefix
~wire_name delta nb_proofs
in
SMap.add key p acc)
acc
(get_wires_names c.nb_wires))
circuits_map SMap.empty
in
let transcript =
PP.PC.Commitment.expand_transcript transcript proof.perm_and_plook
in
PP.verify
~proof_type:
(PP.Aggregated
{
nb_proofs = SMap.map (fun (_, _, n) -> n) circuits_map;
common_keys;
})
common_pp.pp_public_parameters transcript
[ proof.wires_cm; proof.perm_and_plook ]
~not_committed_online proof.proof query
end
type prover_public_parameters = {
common_pp : Prover.prover_common_pp;
circuits_map : Prover.prover_circuit_pp SMap.t;
}
type verifier_public_parameters = {
common_pp : Verifier.verifier_common_pp;
circuits_map : Verifier.verifier_circuit_pp SMap.t;
}
let verifier_public_parameters_encoding :
verifier_public_parameters Data_encoding.t =
Data_encoding.(
conv
(fun { common_pp; circuits_map } -> (common_pp, circuits_map))
(fun (common_pp, circuits_map) -> { common_pp; circuits_map })
(obj2
(req "common_pp" Verifier.verifier_common_pp_encoding)
(req "circuits_map"
(SMap.encoding Verifier.verifier_circuit_pp_encoding))))
module Preprocess = struct
let degree_evaluations ~nb_wires ~zero_knowledge ~gates ~n ~ultra =
let module_list = select_modules gates in
let degree_evaluation =
Gates.Gate_aggregator.aggregate_polynomials_degree ~module_list
in
let zk_factor = if zero_knowledge then if n <= 2 then 4 else 2 else 1 in
let min_deg =
let min_perm = Perm.polynomials_degree ~nb_wires in
if ultra then max (Plook.polynomials_degree ()) min_perm else min_perm
in
let max_degree =
SMap.fold (fun _ d acc -> max d acc) degree_evaluation min_deg
in
let len_evals = zk_factor * max_degree * n in
len_evals
let domain_evaluations ~nb_wires ~zero_knowledge ~gates ~n ~ultra =
let len_evals =
degree_evaluations ~nb_wires ~zero_knowledge ~gates ~n ~ultra
in
Domain.build ~log:Z.(log2up (of_int len_evals))
let preprocessing ?(prefix = "") domain gates wires tables n l circuit_size
table_size nb_wires ~ultra =
let gates =
if l > 0 && (not @@ SMap.mem "ql" gates) then
SMap.add "ql" (Array.init circuit_size (fun _ -> Scalar.zero)) gates
else gates
in
let extended_gates =
SMap.mapi
(fun label poly ->
let length_poly = Array.length poly in
Array.init n (fun i ->
if i < l && label = "ql" then Scalar.one
else if l <= i && i < l + length_poly then poly.(i - l)
else Scalar.zero))
gates
in
let extended_gates = SMap.Aggregation.prefix_map ~prefix extended_gates in
let interpolated_gates =
SMap.map (Evaluations.interpolation_fft2 domain) extended_gates
in
let extended_gates =
if l = 0 then extended_gates
else SMap.add (prefix ^ "qpub") [||] extended_gates
in
let extended_wires =
let li_array = Array.init l (fun i -> i) in
SMap.map (fun w -> Utils.pad (Array.append li_array w) n) wires
in
let extended_tables =
if not ultra then []
else
Plook.format_tables ~tables ~nb_columns:nb_wires
~length_not_padded:table_size ~length_padded:n
in
(interpolated_gates, extended_gates, extended_wires, extended_tables)
let preprocess_map domain domain_evals n circuits_map =
SMap.fold
(fun name ((c : Circuit.t), _) (prv, vrf, all_g_maps, gates_query) ->
let alpha = Scalar.random () in
let gates_poly, gates, wires, tables =
preprocessing domain c.gates c.wires c.tables n c.public_input_size
c.circuit_size c.table_size c.nb_wires ~ultra:c.ultra
in
let permutation =
let partition = Partition.build_partition wires in
Partition.partition_to_permutation partition
in
let g_map_perm =
Perm.preprocessing ~domain ~nb_wires:c.nb_wires ~permutation ()
in
let g_map_plook =
if c.ultra then Plook.preprocessing ~domain ~tables ~alpha ()
else SMap.empty
in
let circuit_g_map =
SMap.union_disjoint_list [ g_map_plook; g_map_perm; gates_poly ]
in
let evaluations =
Evaluations.compute_evaluations ~domain:domain_evals circuit_g_map
in
let prefix = if name = "" then "" else name ^ sep in
let prover_pp =
Prover.
{
circuit_size = c.circuit_size;
nb_wires = c.nb_wires;
gates;
tables;
wires;
evaluations;
permutation;
alpha;
ultra = c.ultra;
}
in
let generator = Domain.get domain 1 in
let c_gates_query =
Gates.Gate_aggregator.aggregate_verifier_queries ~prefix
~module_list:(select_modules gates) ~generator ~size_domain:n ()
in
let verifier_pp =
let gates = SMap.map (fun _ -> ()) gates in
Verifier.{ gates; nb_wires = c.nb_wires; alpha; ultra = c.ultra }
in
let g_map =
SMap.(
union_disjoint all_g_maps
(Aggregation.prefix_map ~prefix circuit_g_map))
in
( SMap.(union_disjoint prv (singleton name prover_pp)),
SMap.(union_disjoint vrf (singleton name verifier_pp)),
g_map,
PP.merge_verifier_queries [ c_gates_query; gates_query ] ))
circuits_map
SMap.(empty, empty, empty, PP.empty_verifier_query)
let compute_sizes ~zero_knowledge
Circuit.
{
public_input_size;
circuit_size;
nb_wires;
table_size;
nb_lookups;
ultra;
gates;
_;
} nb_proofs =
let nb_cs_pi =
circuit_size + public_input_size + if ultra then 1 else 0
in
let nb_rec_look = if ultra then max (nb_lookups + 1) table_size else 0 in
let max_nb = max nb_cs_pi nb_rec_look in
let log = Z.(log2up (of_int max_nb)) in
let n = Int.shift_left 1 log in
let srs_size =
let srs_size_plonk = Perm.srs_size ~zero_knowledge ~n in
if ultra then
let srs_size_plookup = Plook.srs_size ~length_table:n in
max srs_size_plonk srs_size_plookup + 1
else srs_size_plonk
in
let pack_size =
let nb_g_map_polys =
let ultra_polys = if ultra then 2 else 0 in
1 + nb_wires + SMap.cardinal gates + ultra_polys
in
let = if ultra then 5 else 1 in
let online = max nb_wires nb_extra_polys * nb_proofs in
let offline = max nb_g_map_polys 5 in
2 * max online offline
in
(log, n, srs_size, pack_size)
let get_sizes ~zero_knowledge circuits_map =
let log, n, max_d, total_pack, some_ultra =
SMap.fold
(fun _ (c, nb_proofs)
(acc_log, acc_n, acc_srs_size, acc_pack_size, acc_ultra) ->
let log, n, srs_size, pack_size =
compute_sizes ~zero_knowledge c nb_proofs
in
( max acc_log log,
max acc_n n,
max acc_srs_size srs_size,
acc_pack_size + pack_size,
acc_ultra || c.ultra ))
circuits_map (0, 0, 0, 0, false)
in
let len_evals =
SMap.fold
(fun _ ((c : Circuit.t), _) acc_deg_eval ->
let deg_eval =
degree_evaluations ~nb_wires:c.nb_wires ~zero_knowledge
~gates:c.gates ~n ~ultra:c.ultra
in
max acc_deg_eval deg_eval)
circuits_map 0
in
let domain_evals = Domain.build ~log:Z.(log2up (of_int len_evals)) in
let domain = Domain.build ~log in
let total_pack = 1 lsl Z.(log2up (of_int total_pack)) in
(domain, n, max_d, total_pack, domain_evals, some_ultra)
let setup_circuits_with_pool ?(zero_knowledge = true) circuits_map ~srsfiles
=
let domain, n, srs_size, pack_size, domain_evals, some_ultra =
get_sizes ~zero_knowledge circuits_map
in
let g_map_common, evaluations, sid_verifier_query =
let g_map_perm, evaluations_perm, sid_verifier_query =
Perm.common_preprocessing ~compute_l1:(not some_ultra) ~domain
~nb_wires:3
~domain_evals
in
let g_map_plook =
if some_ultra then Plook.common_preprocessing ~n ~domain
else SMap.empty
in
let g_map = SMap.union_disjoint g_map_perm g_map_plook in
let evaluations =
SMap.add "X" (Evaluations.of_domain domain_evals) evaluations_perm
in
( g_map,
Evaluations.compute_evaluations_update_map ~evaluations g_map,
sid_verifier_query )
in
let pp_prv, pp_vrf, g_map, gates_query =
preprocess_map domain domain_evals n circuits_map
in
let query =
PP.merge_verifier_queries [ sid_verifier_query; gates_query ]
in
let g_map = SMap.union_disjoint g_map g_map_common in
let pp_prover, pp_verifier =
PP.setup ~setup_params:(srs_size, pack_size) g_map ~subgroup_size:n
srsfiles
in
let transcript =
let pc_public_parameters = pp_prover.pc_public_parameters in
let tmp = PP.PC.Public_parameters.to_bytes pc_public_parameters in
PP.PC.Commitment.expand_transcript tmp pp_verifier.cm_g_map
in
let common_keys =
let common_keys = List.map fst (SMap.bindings g_map) in
if some_ultra then common_keys @ [ "Si1"; "Si2"; "Si3"; "x_minus_1" ]
else common_keys @ [ "Si1"; "Si2"; "Si3" ]
in
let common_prv =
Prover.
{
n;
domain;
pp_public_parameters = pp_prover;
evaluations;
common_keys;
}
in
let common_vrf =
Verifier.
{
n;
generator = Domain.get domain 1;
pp_public_parameters = pp_verifier;
query;
common_keys;
}
in
( ( ({ common_pp = common_prv; circuits_map = pp_prv }
: prover_public_parameters),
{ common_pp = common_vrf; circuits_map = pp_vrf } ),
transcript )
end
let check_circuit_name map =
SMap.iter
(fun name _ ->
if name = "" then ()
else if Char.compare name.[0] '9' <= 0 then
failwith
(Printf.sprintf "check_circuit_name : circuit name (= '%s')" name
^ " must not begin with '\\', '#', '$', '%', '&', ''', '(', ')', \
'*', '+', ',', '-', '.', '/' or a digit.")
else if String.contains name SMap.Aggregation.sep.[0] then
failwith
(Printf.sprintf
"check_circuit_name : circuit name (= '%s') mustn't contain '%s'"
name SMap.Aggregation.sep))
map
let setup_multi_circuits ?(zero_knowledge = true)
?(num_additional_domains = 0) circuits_map ~srsfiles =
check_circuit_name circuits_map;
Multicore.with_pool ~num_additional_domains (fun () ->
Preprocess.setup_circuits_with_pool ~zero_knowledge circuits_map
~srsfiles)
let prove_multi_circuits ?(zero_knowledge = true)
?(num_additional_domains = 0)
((pp : prover_public_parameters), transcript) ~inputs =
check_circuit_name pp.circuits_map;
Multicore.with_pool ~num_additional_domains (fun () ->
Prover.prove_circuits_with_pool ~zero_knowledge
((pp.common_pp, pp.circuits_map), transcript)
~inputs_map:inputs)
let verify_multi_circuits (pp, transcript) ~public_inputs proof =
check_circuit_name pp.circuits_map;
Multicore.with_pool ~num_additional_domains:0 (fun () ->
Verifier.verify_circuits
((pp.common_pp, pp.circuits_map), transcript)
~public_inputs proof)
let setup ?(zero_knowledge = true) ?(num_additional_domains = 0) circuit
~srsfiles ~nb_proofs =
let circuits_map = SMap.singleton "" (circuit, nb_proofs) in
Multicore.with_pool ~num_additional_domains (fun () ->
Preprocess.setup_circuits_with_pool ~zero_knowledge circuits_map
~srsfiles)
let prove ?(zero_knowledge = true) ?(num_additional_domains = 0) pp ~inputs =
let inputs_map = SMap.singleton "" [ inputs ] in
prove_multi_circuits ~zero_knowledge ~num_additional_domains pp
~inputs:inputs_map
let verify pp ~public_inputs proof =
let public_inputs = SMap.singleton "" [ public_inputs ] in
verify_multi_circuits pp ~public_inputs proof
end
module type Main_protocol_sig = sig
exception Entry_not_in_table of string
exception Rest_not_null of string
exception Wrong_transcript of string
module SMap : SMap.StringMap_sig
type scalar = Bls12_381.Fr.t
val scalar_encoding : scalar Data_encoding.t
type transcript
type prover_public_parameters
type verifier_public_parameters
val verifier_public_parameters_encoding :
verifier_public_parameters Data_encoding.t
type proof
val proof_encoding : proof Data_encoding.t
type prover_inputs = { public : scalar array; witness : scalar array }
val transcript_encoding : transcript Data_encoding.t
val setup :
?zero_knowledge:bool ->
?num_additional_domains:int ->
Circuit.t ->
srsfiles:(string * string) * (string * string) ->
nb_proofs:int ->
(prover_public_parameters * verifier_public_parameters) * transcript
val prove :
?zero_knowledge:bool ->
?num_additional_domains:int ->
prover_public_parameters * transcript ->
inputs:prover_inputs ->
proof * transcript
val verify :
verifier_public_parameters * transcript ->
public_inputs:scalar array ->
proof ->
bool * transcript
val setup_multi_circuits :
?zero_knowledge:bool ->
?num_additional_domains:int ->
(Circuit.t * int) SMap.t ->
srsfiles:(string * string) * (string * string) ->
(prover_public_parameters * verifier_public_parameters) * transcript
val prove_multi_circuits :
?zero_knowledge:bool ->
?num_additional_domains:int ->
prover_public_parameters * transcript ->
inputs:prover_inputs list SMap.t ->
proof * transcript
val verify_multi_circuits :
verifier_public_parameters * transcript ->
public_inputs:scalar array list SMap.t ->
proof ->
bool * transcript
end
include (Make (Polynomial_protocol) : Main_protocol_sig)