Polynomial_protocol.EvaluationsSourcetype polynomial = PC.Polynomial.Polynomial.ttype t = PC.Polynomial.Evaluations.tval of_array : (int * PC.Scalar.t array) -> tval to_array : t -> PC.Scalar.t arrayval string_of_eval : t -> stringtype domain = PC.Polynomial.Domain.tval zero : tval is_zero : t -> boolval degree : t -> intval length : t -> intval create : int -> tval get : t -> int -> PC.Scalar.tval mul_by_scalar : PC.Scalar.t -> t -> tval linear_c :
?res:t ->
evaluations:t list ->
?linear_coeffs:PC.Scalar.t list ->
?composition_gx:(int list * int) ->
?add_constant:PC.Scalar.t ->
unit ->
tval linear_with_powers : t list -> PC.Scalar.t -> tval evaluation_fft : domain -> polynomial -> tval interpolation_fft : domain -> t -> polynomialval interpolation_fft2 : domain -> PC.Scalar.t array -> polynomialval dft : domain -> polynomial -> tval idft_inplace : domain -> t -> polynomialval evaluation_fft_prime_factor_algorithm :
domain1:domain ->
domain2:domain ->
polynomial ->
tval interpolation_fft_prime_factor_algorithm_inplace :
domain1:domain ->
domain2:domain ->
t ->
polynomialval compute_evaluations_update_map :
?domain:domain ->
evaluations:t Plonk.SMap.t ->
polynomial Plonk.SMap.t ->
t Plonk.SMap.tval mul :
?res:t ->
evaluations:t Plonk.SMap.t ->
poly_names:string list ->
?composition_gx:(int list * int) ->
?powers:int list ->
unit ->
tval linear :
?res:t ->
evaluations:t Plonk.SMap.t ->
poly_names:Plonk.SMap.key list ->
?linear_coeffs:PC.Scalar.t list ->
?composition_gx:(int list * int) ->
?add_constant:PC.Scalar.t ->
unit ->
t