1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
type ('a, -'p) t =
{ mutable growth_rate: float
; mutable length: int
; mutable data: 'a array
}
let default_growth_rate = 2.
let[@inline] array_uninit n = Array.make n (Obj.magic 0)
let make ?growth_rate:(gr=default_growth_rate) ?capacity:(c=0) () =
if gr <= 1. then
raise (Invalid_argument "growth_rate <= 1")
else if c < 0 then
raise (Invalid_argument "capacity < 0")
else
{ growth_rate = gr
; length = 0
; data = array_uninit c
}
external as_read_only: ('a, [> `R]) t -> ('a, [`R]) t = "%identity"
external as_write_only: ('a, [> `W]) t -> ('a, [`W]) t = "%identity"
let[@inline] length v = v.length
let[@inline] capacity v = Array.length v.data
let[@inline] growth_rate v = v.growth_rate
let set_growth_rate gr v =
if gr <= 1.
then raise (Invalid_argument "growth_rate <= 1")
else v.growth_rate <- gr
let[@inline] clear v =
v.length <- 0;
v.data <- [||]
let[@inline] get_exn v i =
if i < 0 || i >= v.length
then raise (Invalid_argument "Index out of range")
else v.data.(i)
let[@inline] set_exn v i a =
if i < 0 || i >= v.length
then raise (Invalid_argument "Index out of range")
else v.data.(i) <- a
let get v i =
if i < 0 || i >= v.length
then None
else Some v.data.(i)
let[@inline] set v i a = i >= 0 && i < v.length && (v.data.(i) <- a; true)
let ensure_capacity c v =
let capacity = capacity v in
if c < 0 then
raise (Invalid_argument "capacity < 0")
else if c > capacity then begin
let cap = ref (if capacity = 0 then v.growth_rate else float_of_int capacity) in
let c = float_of_int c in
while !cap < c do
cap := !cap *. v.growth_rate
done;
let data = array_uninit (int_of_float !cap) in
Array.blit v.data 0 data 0 v.length;
v.data <- data
end
let reserve c v =
if c < 0
then raise (Invalid_argument "amount_to_reserve < 0")
else ensure_capacity (capacity v + c) v
let shrink_to_fit v =
if capacity v > v.length then
let data = array_uninit v.length in
Array.blit v.data 0 data 0 v.length;
v.data <- data
let push val' v =
ensure_capacity (v.length + 1) v;
let length = v.length in
v.length <- length + 1;
v.data.(length) <- val'
let pop v =
if v.length = 0 then
None
else
let val' = v.data.(v.length - 1) in
v.data.(v.length - 1) <- Obj.magic 0;
v.length <- v.length - 1;
Some val'
let[@inline] singleton a =
{ growth_rate = default_growth_rate
; length = 1
; data = [|a|]
}
let map f v =
let v2 = make ~growth_rate:v.growth_rate ~capacity:v.length () in
v2.length <- v.length;
for i = 0 to v.length - 1 do
v2.data.(i) <- f v.data.(i)
done;
v2
let mapi f v =
let v2 = make ~growth_rate:v.growth_rate ~capacity:v.length () in
v2.length <- v.length;
for i = 0 to v.length - 1 do
v2.data.(i) <- f i v.data.(i)
done;
v2
let map_in_place f v =
for i = 0 to v.length - 1 do
v.data.(i) <- f v.data.(i)
done
let map2 f v1 v2 =
let total_l = v1.length * v2.length in
let max_gr = max v1.growth_rate v2.growth_rate in
let v = make ~growth_rate:max_gr ~capacity:total_l () in
v.length <- total_l;
let idx = ref 0 in
for i = 0 to v1.length - 1 do
for j = 0 to v2.length - 1 do
v.data.(!idx) <- f v1.data.(i) v2.data.(j);
incr idx
done
done;
v
let[@inline] apply f v = map2 (@@) f v
let flatten vs =
let max_gr = ref 0. in
let total_l = ref 0 in
for i = 0 to vs.length - 1 do
let crr_v = vs.data.(i) in
let v_gr = crr_v.growth_rate in
if !max_gr < v_gr then
max_gr := v_gr;
total_l := !total_l + crr_v.length
done;
let v = make ~growth_rate:!max_gr ~capacity:!total_l () in
v.length <- !total_l;
let idx = ref 0 in
for i = 0 to vs.length - 1 do
let crr_v = vs.data.(i) in
for j = 0 to crr_v.length - 1 do
v.data.(!idx) <- crr_v.data.(j);
incr idx
done
done;
v
let append v v2 =
let l = v.length + v2.length in
ensure_capacity l v;
for i = 0 to v2.length - 1 do
v.data.(i + v.length) <- v2.data.(i)
done;
v.length <- l
let flat_map f v =
let v2 = make ~growth_rate:v.growth_rate ~capacity:v.length () in
for i = 0 to v.length - 1 do
append v2 (f v.data.(i))
done;
v2
let[@inline] cartesian_product a b = map2 (fun a b -> a, b) a b
let iter f v =
for i = 0 to v.length - 1 do
f v.data.(i)
done
let iteri f v =
for i = 0 to v.length - 1 do
f i v.data.(i)
done
let filter f v =
let v2 = make ~growth_rate:v.growth_rate ~capacity:v.length () in
let l = ref 0 in
for i = 0 to v.length - 1 do
let e = v.data.(i) in
if f e then
(v2.data.(!l) <- e; incr l)
done;
v2.length <- !l;
v2
let filteri f v =
let v2 = make ~growth_rate:v.growth_rate ~capacity:v.length () in
let l = ref 0 in
for i = 0 to v.length - 1 do
let e = v.data.(i) in
if f i e then
(v2.data.(!l) <- e; incr l)
done;
v2.length <- !l;
v2
let filter_in_place f v =
let old_l = v.length in
let l = ref 0 in
for i = 0 to old_l - 1 do
let e = v.data.(i) in
if f e then
(v.data.(!l) <- e; incr l)
done;
for i = !l to old_l - 1 do
v.data.(i) <- Obj.magic 0
done;
v.length <- !l
let[@inline] of_array_steal a =
{ growth_rate = default_growth_rate
; length = Array.length a
; data = a
}
let[@inline] of_array a = of_array_steal (Array.copy a)
let[@inline] to_array v = Array.sub v.data 0 v.length
let[@inline] of_list l = of_array_steal (Array.of_list l)
let to_list v =
let rec go acc = function
| -1 -> acc
| i -> go (v.data.(i) :: acc) (i - 1)
in
go [] (v.length - 1)
let[@inline] copy v = of_array_steal (to_array v)
let rev_in_place v =
let[@inline] swap i j =
let temp = v.data.(i) in
v.data.(i) <- v.data.(j);
v.data.(j) <- temp
in
let rec go i j =
if i < j
then (swap i j; go (i + 1) (j - 1))
in
go 0 (v.length - 1)
let[@inline] rev v =
let v' = copy v in
rev_in_place v';
v'
let exists f v =
let rec go i = i <> v.length && (f v.data.(i) || go (i + 1))
in go 0
let for_all f v =
let rec go i = i = v.length || (f v.data.(i) && go (i + 1))
in go 0
let[@inline] mem e = exists ((=) e)
let[@inline] memq e = exists ((==) e)
let fold_left f z v =
let rec go acc i =
if i = v.length
then acc
else go (f acc v.data.(i)) (i + 1)
in
go z 0
let fold_right f v z =
let rec go acc i =
if i <= 0
then acc
else go (f v.data.(i) acc) (i - 1)
in
go z (v.length - 1)
let zip_with f v1 v2 =
let min_length = min v1.length v2.length in
let max_gr = max v1.growth_rate v2.growth_rate in
let v = make ~growth_rate:max_gr ~capacity:min_length () in
v.length <- min_length;
for i = 0 to min_length - 1 do
v.data.(i) <- f v1.data.(i) v2.data.(i)
done;
v
let[@inline] zip v1 v2 = zip_with (fun a b -> (a, b)) v1 v2
let[@inline] sort_by f v =
shrink_to_fit v;
Array.fast_sort f v.data
let[@inline] sort v = sort_by compare v
let equal_by f a b =
if a.length <> b.length then
false
else
let rec go i = i = a.length || (f a.data.(i) b.data.(i) && go (i + 1))
in go 0
let[@inline] equal a b = equal_by (=) a b
let compare_by f a b =
let min_l, min_l_ord =
match a.length - b.length with
| 0 -> a.length, 0
| l when l < 0 -> a.length, -1
| _ -> b.length, 1
in
let rec go i =
if i = min_l
then min_l_ord
else
let ord = f a.data.(i) b.data.(i) in
if ord <> 0
then ord
else go (i + 1)
in
go 0
let[@inline] compare a b = compare_by compare a b
let pretty_print fmt v =
if v.length = 0 then
"[]"
else
let buf = Buffer.create 2 in
Buffer.add_char buf '[';
Buffer.add_string buf @@ fmt v.data.(0);
for i = 1 to v.length - 1 do
Buffer.add_string buf "; ";
Buffer.add_string buf (fmt v.data.(i))
done;
Buffer.add_char buf ']';
Buffer.contents buf
let iota start end' =
let l = (abs (end' - start) + 1) in
let v = make ~capacity:l () in
let rec inc i crr =
if crr <= end' then begin
v.data.(i) <- crr;
inc (i + 1) (crr + 1)
end
in
let rec dec i crr =
if crr >= end' then begin
v.data.(i) <- crr;
dec (i + 1) (crr - 1)
end
in
if start < end'
then inc 0 start
else dec 0 start;
v.length <- l;
v
module Infix = struct
let (.![]) = get_exn
let (.![]<-) = set_exn
let (.?[]) = get
let (.?[]<-) = set
let (=|<) = map
let[@inline] (>|=) v f = f =|< v
let (<$>) = map
let (<*>) = apply
let (=<<) = flat_map
let (>>=) v f = f =<< v
let (--) = iota
end
module Let_syntax = struct
let[@inline] (let+) v f = map f v
let (and+) = cartesian_product
let[@inline] (let*) v f = flat_map f v
let (and*) = cartesian_product
end