1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
open Nx_core
type ('a, 'b) buffer = ('a, 'b) Internal.buffer
type context = Internal.context
type ('a, 'b) t = ('a, 'b) Internal.t = {
context : context;
dtype : ('a, 'b) Dtype.t;
buffer : ('a, 'b) buffer;
view : View.t;
}
let view t = t.view
let dtype t = t.dtype
let data t = t.buffer
let context t = t.context
let with_view t view = { t with view }
let create_context () = Internal.{ pool = Parallel.get_or_setup_pool () }
let op_buffer ctx dt size_in_elements =
let kind = Dtype.to_bigarray_kind dt in
let ba = Bigarray.Array1.create kind Bigarray.c_layout size_in_elements in
let initial_view =
if size_in_elements = 0 then View.create [| 0 |]
else View.create [| size_in_elements |]
in
{ context = ctx; dtype = dt; buffer = ba; view = initial_view }
let op_const_scalar ctx value dt =
let kind = Dtype.to_bigarray_kind dt in
let ba = Bigarray.Array1.create kind Bigarray.c_layout 1 in
Bigarray.Array1.set ba 0 value;
let scalar_view = View.create [||] in
{ context = ctx; dtype = dt; buffer = ba; view = scalar_view }
let op_const_array ctx bigarray =
let dtype = Dtype.of_bigarray_kind (Bigarray.Array1.kind bigarray) in
let size = Bigarray.Array1.dim bigarray in
let t = op_buffer ctx dtype size in
Bigarray.Array1.blit bigarray (data t);
t
let op_add a b =
let ctx = a.context in
let out_shape = View.shape a.view in
let out_size = View.numel a.view in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.add ctx a b out_tensor;
out_tensor
let op_mul a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.mul ctx a b out_tensor;
out_tensor
let op_idiv a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.idiv ctx a b out_tensor;
out_tensor
let op_fdiv a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.fdiv ctx a b out_tensor;
out_tensor
let op_max a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.max ctx a b out_tensor;
out_tensor
let op_mod a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.modulo ctx a b out_tensor;
out_tensor
let op_pow a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.pow ctx a b out_tensor;
out_tensor
let op_cmplt a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx Dtype.uint8 out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.cmplt ctx a b out_tensor;
out_tensor
let op_cmpne a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx Dtype.uint8 out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.cmpne ctx a b out_tensor;
out_tensor
let op_xor a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.bit_xor ctx a b out_tensor;
out_tensor
let op_or a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.bit_or ctx a b out_tensor;
out_tensor
let op_and a b =
let ctx = a.context in
let out_shape = Internal.shape a in
let out_size = Internal.size a in
let out_tensor =
op_buffer ctx a.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_binary.bit_and ctx a b out_tensor;
out_tensor
let op_neg x =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx x.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_unary.neg ctx x out_tensor;
out_tensor
let op_log2 x =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx x.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_unary.log2 ctx x out_tensor;
out_tensor
let op_exp2 x =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx x.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_unary.exp2 ctx x out_tensor;
out_tensor
let op_sin x =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx x.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_unary.sin ctx x out_tensor;
out_tensor
let op_sqrt x =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx x.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_unary.sqrt ctx x out_tensor;
out_tensor
let op_recip x =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx x.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_unary.recip ctx x out_tensor;
out_tensor
let op_where cond if_true if_false =
let ctx = cond.context in
let out_shape = View.shape cond.view in
let out_size = View.numel cond.view in
let out_tensor =
op_buffer ctx if_true.dtype out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_ternary.where ctx cond if_true if_false out_tensor;
out_tensor
let fill_buffer_with_identity buf count identity_val =
for i = 0 to count - 1 do
Bigarray.Array1.unsafe_set buf i identity_val
done
let op_reduce_sum ~(axes : int array) ~(keepdims : bool) xensor =
let ctx = xensor.context in
let input_shape = Internal.shape xensor in
let input_rank = Array.length input_shape in
let axes_to_reduce_normalized =
Array.map (fun ax -> if ax < 0 then ax + input_rank else ax) axes
in
let axes_to_reduce =
Array.of_list
(List.sort_uniq Int.compare (Array.to_list axes_to_reduce_normalized))
in
let output_shape_logical =
Array.mapi
(fun i s ->
if Array.mem i axes_to_reduce then
if keepdims then 1 else -1
else s)
input_shape
|> Array.to_list
|> List.filter (( <> ) (-1))
|> Array.of_list
in
let output_shape_final =
if Array.length output_shape_logical = 0 then [||] else output_shape_logical
in
let output_numel = Shape.numel output_shape_final in
let output_tensor =
op_buffer ctx xensor.dtype output_numel |> fun t ->
with_view t (View.create output_shape_final)
in
if output_numel > 0 then
fill_buffer_with_identity
(Internal.buffer output_tensor)
output_numel (Dtype.zero xensor.dtype);
Ops_reduce.sum ctx ~axes:axes_to_reduce ~keepdims xensor output_tensor;
output_tensor
let op_reduce_max ~(axes : int array) ~(keepdims : bool) xensor =
let ctx = xensor.context in
let input_shape = Internal.shape xensor in
let input_rank = Array.length input_shape in
let axes_to_reduce_normalized =
Array.map (fun ax -> if ax < 0 then ax + input_rank else ax) axes
in
let axes_to_reduce =
Array.of_list
(List.sort_uniq Int.compare (Array.to_list axes_to_reduce_normalized))
in
let output_shape_logical =
Array.mapi
(fun i s ->
if Array.mem i axes_to_reduce then if keepdims then 1 else -1 else s)
input_shape
|> Array.to_list
|> List.filter (( <> ) (-1))
|> Array.of_list
in
let output_shape_final =
if Array.length output_shape_logical = 0 then [||] else output_shape_logical
in
let output_numel = Shape.numel output_shape_final in
let output_tensor =
op_buffer ctx xensor.dtype output_numel |> fun t ->
with_view t (View.create output_shape_final)
in
if output_numel > 0 then
fill_buffer_with_identity
(Internal.buffer output_tensor)
output_numel
(Dtype.min_value xensor.dtype);
Ops_reduce.max ctx ~axes:axes_to_reduce ~keepdims xensor output_tensor;
output_tensor
let op_reduce_prod ~(axes : int array) ~(keepdims : bool) xensor =
let ctx = xensor.context in
let input_shape = Internal.shape xensor in
let input_rank = Array.length input_shape in
let axes_to_reduce_normalized =
Array.map (fun ax -> if ax < 0 then ax + input_rank else ax) axes
in
let axes_to_reduce =
Array.of_list
(List.sort_uniq Int.compare (Array.to_list axes_to_reduce_normalized))
in
let output_shape_logical =
Array.mapi
(fun i s ->
if Array.mem i axes_to_reduce then if keepdims then 1 else -1 else s)
input_shape
|> Array.to_list
|> List.filter (( <> ) (-1))
|> Array.of_list
in
let output_shape_final =
if Array.length output_shape_logical = 0 then [||] else output_shape_logical
in
let output_numel = Shape.numel output_shape_final in
let output_tensor =
op_buffer ctx xensor.dtype output_numel |> fun t ->
with_view t (View.create output_shape_final)
in
if output_numel > 0 then
fill_buffer_with_identity
(Internal.buffer output_tensor)
output_numel (Dtype.one xensor.dtype);
Ops_reduce.prod ctx ~axes:axes_to_reduce ~keepdims xensor output_tensor;
output_tensor
let op_reshape t (new_shape : int array) =
match View.reshape t.view new_shape with
| new_view -> { t with view = new_view }
| exception Invalid_argument msg -> invalid_arg msg
| exception Failure msg -> failwith msg
let op_expand t (new_target_shape : int array) =
match View.expand t.view new_target_shape with
| new_view -> { t with view = new_view }
| exception Invalid_argument msg -> invalid_arg ("op_expand: " ^ msg)
let op_permute t (axes : int array) =
match View.permute t.view axes with
| new_view -> { t with view = new_view }
| exception Invalid_argument msg -> invalid_arg ("op_permute: " ^ msg)
let op_pad t padding_config (fill_value : 'a) =
let old_view = t.view in
let new_view_metadata_only = View.pad old_view padding_config in
let needs_new_buffer =
Array.exists (fun (pb, pa) -> pb > 0 || pa > 0) padding_config
in
if not needs_new_buffer then { t with view = new_view_metadata_only }
else
let new_shape = View.shape new_view_metadata_only in
let new_numel = View.numel new_view_metadata_only in
let new_t =
op_buffer t.context t.dtype new_numel |> fun nt ->
with_view nt (View.create new_shape)
in
Bigarray.Array1.fill new_t.buffer fill_value;
let shrink_args_for_dst =
Array.mapi
(fun i (pb, _pa) -> (pb, pb + (View.shape old_view).(i)))
padding_config
in
let dst_slice_view = View.shrink new_t.view shrink_args_for_dst in
let dst_slice_tensor = { new_t with view = dst_slice_view } in
Internal.blit t dst_slice_tensor;
new_t
let op_shrink t limits =
match View.shrink t.view limits with
| new_view -> { t with view = new_view }
| exception Invalid_argument msg -> invalid_arg ("op_shrink: " ^ msg)
let op_flip t axes_to_flip =
match View.flip t.view axes_to_flip with
| new_view -> { t with view = new_view }
| exception Invalid_argument msg -> invalid_arg ("op_flip: " ^ msg)
let op_cat tensors axis =
if List.length tensors = 0 then
invalid_arg "op_cat: tensor list cannot be empty";
let first_t = List.hd tensors in
let ctx = first_t.context in
let dt_ref = Internal.dtype first_t in
let rank = Internal.ndim first_t in
let axis = if axis < 0 then axis + rank else axis in
if axis < 0 || axis >= rank then invalid_arg "op_cat: axis out of bounds";
let output_dim_size_at_axis =
List.fold_left
(fun acc t ->
if not (Dtype.equal (Internal.dtype t) dt_ref) then
failwith "op_cat: dtypes mismatch";
if Internal.ndim t <> rank then failwith "op_cat: ranks mismatch";
for i = 0 to rank - 1 do
if i <> axis && (Internal.shape t).(i) <> (Internal.shape first_t).(i)
then failwith "op_cat: non-axis dimensions mismatch"
done;
acc + (Internal.shape t).(axis))
0 tensors
in
let output_shape = Array.copy (Internal.shape first_t) in
output_shape.(axis) <- output_dim_size_at_axis;
let output_numel = Shape.numel output_shape in
let output_t =
op_buffer ctx dt_ref output_numel |> fun t ->
with_view t (View.create output_shape)
in
let current_offset_at_axis = ref 0 in
List.iter
(fun src_t ->
let src_dim_size_at_axis = (Internal.shape src_t).(axis) in
if src_dim_size_at_axis > 0 then (
let slice_starts = Array.make rank 0 in
let slice_ends = Array.copy (Internal.shape output_t) in
slice_starts.(axis) <- !current_offset_at_axis;
slice_ends.(axis) <- !current_offset_at_axis + src_dim_size_at_axis;
let shrink_args_for_dst =
Array.init rank (fun i -> (slice_starts.(i), slice_ends.(i)))
in
let dst_slice_view = View.shrink output_t.view shrink_args_for_dst in
let dst_slice_tensor = { output_t with view = dst_slice_view } in
Internal.blit src_t dst_slice_tensor);
current_offset_at_axis := !current_offset_at_axis + src_dim_size_at_axis)
tensors;
output_t
let op_cast x target_dt =
let ctx = x.context in
let out_shape = Internal.shape x in
let out_size = Internal.size x in
let out_tensor =
op_buffer ctx target_dt out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_cast.cast ctx x out_tensor;
out_tensor
let op_contiguous t =
if Internal.is_c_contiguous t && View.offset t.view = 0 then t
else Internal.copy t
let op_copy t = Internal.copy t
let op_assign target_t source_t = Internal.blit source_t target_t
let op_threefry data seed =
let ctx = data.context in
let out_shape = Internal.shape data in
let out_size = Internal.size data in
let out_tensor =
op_buffer ctx Dtype.int32 out_size |> fun t ->
with_view t (View.create out_shape)
in
Ops_threefry.threefry ctx data seed out_tensor;
out_tensor
let op_gather data_t indices_t axis =
let ctx = data_t.context in
let data_shape = Internal.shape data_t in
let indices_shape = Internal.shape indices_t in
let data_rank = Array.length data_shape in
let indices_rank = Array.length indices_shape in
if data_rank <> indices_rank then
invalid_arg
(Printf.sprintf
"op_gather: data rank (%d) and indices rank (%d) must match" data_rank
indices_rank);
let axis = if axis < 0 then axis + data_rank else axis in
if axis < 0 || axis >= data_rank then
invalid_arg
(Printf.sprintf "op_gather: axis %d out of bounds for rank %d" axis
data_rank);
for i = 0 to data_rank - 1 do
if i <> axis && indices_shape.(i) > data_shape.(i) then
invalid_arg
(Printf.sprintf "op_gather: indices.shape[%d]=%d > data.shape[%d]=%d" i
indices_shape.(i) i data_shape.(i))
done;
let output_shape = indices_shape in
let output_numel = Shape.numel output_shape in
let output_t =
op_buffer ctx data_t.dtype output_numel |> fun t ->
with_view t (View.create output_shape)
in
if output_numel = 0 then output_t
else
let data_buffer = Internal.buffer data_t in
let indices_buffer = Internal.buffer indices_t in
let output_buffer = Internal.buffer output_t in
let data_view = data_t.view in
let indices_view = indices_t.view in
let md_idx = Array.make (Array.length output_shape) 0 in
let src_idx = Array.make (Array.length output_shape) 0 in
for linear_idx = 0 to output_numel - 1 do
Shape.unravel_index_into linear_idx output_shape md_idx;
let indices_offset = View.linear_index indices_view md_idx in
let idx_value =
Int32.to_int (Bigarray.Array1.unsafe_get indices_buffer indices_offset)
in
let data_size_at_axis = data_shape.(axis) in
let normalized_idx =
if idx_value < 0 then idx_value + data_size_at_axis else idx_value
in
let clamped_idx = max 0 (min (data_size_at_axis - 1) normalized_idx) in
Array.blit md_idx 0 src_idx 0 (Array.length md_idx);
src_idx.(axis) <- clamped_idx;
if View.is_valid data_view src_idx then
let data_offset = View.linear_index data_view src_idx in
let value = Bigarray.Array1.unsafe_get data_buffer data_offset in
Bigarray.Array1.unsafe_set output_buffer linear_idx value
done;
output_t
let op_scatter (type a b) ?(mode = `Set) ?(unique_indices = false)
(data_template_t : (a, b) Internal.t)
(indices_t : (int32, Dtype.int32_elt) Internal.t)
(updates_t : (a, b) Internal.t) axis : (a, b) Internal.t =
let _ = unique_indices in
let template_shape = Internal.shape data_template_t in
let indices_shape = Internal.shape indices_t in
let updates_shape = Internal.shape updates_t in
let template_rank = Array.length template_shape in
if not (Dtype.equal data_template_t.dtype updates_t.dtype) then
invalid_arg "op_scatter: data_template and updates must have same dtype";
if indices_shape <> updates_shape then
invalid_arg "op_scatter: indices and updates must have same shape";
let axis = if axis < 0 then axis + template_rank else axis in
if axis < 0 || axis >= template_rank then
invalid_arg
(Printf.sprintf "op_scatter: axis %d out of bounds for rank %d" axis
template_rank);
for i = 0 to template_rank - 1 do
if i <> axis && updates_shape.(i) > template_shape.(i) then
invalid_arg
(Printf.sprintf
"op_scatter: updates.shape[%d]=%d > template.shape[%d]=%d" i
updates_shape.(i) i template_shape.(i))
done;
let output_t = Internal.copy data_template_t in
let updates_numel = Shape.numel updates_shape in
if updates_numel = 0 then output_t
else
let output_buffer = Internal.buffer output_t in
let output_view = output_t.view in
let updates_buffer = Internal.buffer updates_t in
let updates_view = updates_t.view in
let indices_buffer = Internal.buffer indices_t in
let indices_view = indices_t.view in
let md_idx = Array.make (Array.length updates_shape) 0 in
let dst_idx = Array.make (Array.length updates_shape) 0 in
for linear_idx = 0 to updates_numel - 1 do
Shape.unravel_index_into linear_idx updates_shape md_idx;
let indices_offset = View.linear_index indices_view md_idx in
let idx_value =
Int32.to_int (Bigarray.Array1.unsafe_get indices_buffer indices_offset)
in
let template_size_at_axis = template_shape.(axis) in
let normalized_idx =
if idx_value < 0 then idx_value + template_size_at_axis else idx_value
in
if normalized_idx >= 0 && normalized_idx < template_size_at_axis then (
Array.blit md_idx 0 dst_idx 0 (Array.length md_idx);
dst_idx.(axis) <- normalized_idx;
if View.is_valid output_view dst_idx then
let updates_offset = View.linear_index updates_view md_idx in
let uv = Bigarray.Array1.unsafe_get updates_buffer updates_offset in
let output_offset = View.linear_index output_view dst_idx in
match mode with
| `Set -> Bigarray.Array1.unsafe_set output_buffer output_offset uv
| `Add ->
let cv = Bigarray.Array1.unsafe_get output_buffer output_offset in
let sum = Dtype.add data_template_t.dtype cv uv in
Bigarray.Array1.unsafe_set output_buffer output_offset sum)
done;
output_t
let op_unfold x ~kernel_size ~stride ~dilation ~padding =
Ops_im2col.unfold x.context x ~kernel_size ~stride ~dilation ~padding
let op_fold x ~output_size ~kernel_size ~stride ~dilation ~padding =
Ops_im2col.fold x.context x ~output_size ~kernel_size ~stride ~dilation
~padding
let op_matmul a b = Ops_matmul.matmul a.context a b