Source file CCWBTree.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
(* This file is free software, part of containers. See file "license" for more details. *)

(** {1 Weight-Balanced Tree}

    Most of this comes from "implementing sets efficiently in a functional language",
    Stephen Adams.

    The coefficients 5/2, 3/2 for balancing come from "balancing weight-balanced trees"
*)

type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit

module type ORD = sig
  type t

  val compare : t -> t -> int
end

module type KEY = sig
  include ORD

  val weight : t -> int
end

(** {2 Signature} *)

module type S = sig
  type key
  type +'a t

  val empty : 'a t
  val is_empty : _ t -> bool
  val singleton : key -> 'a -> 'a t
  val mem : key -> _ t -> bool
  val get : key -> 'a t -> 'a option

  val get_exn : key -> 'a t -> 'a
  (** @raise Not_found if the key is not present *)

  val nth : int -> 'a t -> (key * 'a) option
  (** [nth i m] returns the [i]-th [key, value] in the ascending
      order. Complexity is [O(log (cardinal m))] *)

  val nth_exn : int -> 'a t -> key * 'a
  (** @raise Not_found if the index is invalid *)

  val get_rank : key -> 'a t -> [ `At of int | `After of int | `First ]
  (** [get_rank k m] looks for the rank of [k] in [m], i.e. the index
      of [k] in the sorted list of bindings of [m].
      [let (`At n) = get_rank k m in nth_exn n m = get m k] should hold.
      @since 1.4 *)

  val add : key -> 'a -> 'a t -> 'a t
  val remove : key -> 'a t -> 'a t

  val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
  (** [update k f m] calls [f (Some v)] if [get k m = Some v], [f None]
      otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'],
      if [f] returns [None] it removes [k] *)

  val cardinal : _ t -> int
  val weight : _ t -> int
  val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b

  val mapi : f:(key -> 'a -> 'b) -> 'a t -> 'b t
  (** Map values, giving both key and value.
      @since 0.17
  *)

  val map : f:('a -> 'b) -> 'a t -> 'b t
  (** Map values, giving only the value.
      @since 0.17
  *)

  val iter : f:(key -> 'a -> unit) -> 'a t -> unit

  val split : key -> 'a t -> 'a t * 'a option * 'a t
  (** [split k t] returns [l, o, r] where [l] is the part of the map
      with keys smaller than [k], [r] has keys bigger than [k],
      and [o = Some v] if [k, v] belonged to the map *)

  val merge :
    f:(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
  (** Like {!Map.S.merge} *)

  val extract_min : 'a t -> key * 'a * 'a t
  (** [extract_min m] returns [k, v, m'] where [k,v] is the pair with the
      smallest key in [m], and [m'] does not contain [k].
      @raise Not_found if the map is empty *)

  val extract_max : 'a t -> key * 'a * 'a t
  (** [extract_max m] returns [k, v, m'] where [k,v] is the pair with the
      highest key in [m], and [m'] does not contain [k].
      @raise Not_found if the map is empty *)

  val choose : 'a t -> (key * 'a) option

  val choose_exn : 'a t -> key * 'a
  (** @raise Not_found if the tree is empty *)

  val random_choose : Random.State.t -> 'a t -> key * 'a
  (** Randomly choose a (key,value) pair within the tree, using weights
      as probability weights
      @raise Not_found if the tree is empty *)

  val add_list : 'a t -> (key * 'a) list -> 'a t
  val of_list : (key * 'a) list -> 'a t
  val to_list : 'a t -> (key * 'a) list
  val add_iter : 'a t -> (key * 'a) iter -> 'a t
  val of_iter : (key * 'a) iter -> 'a t
  val to_iter : 'a t -> (key * 'a) iter
  val add_gen : 'a t -> (key * 'a) gen -> 'a t
  val of_gen : (key * 'a) gen -> 'a t
  val to_gen : 'a t -> (key * 'a) gen

  val pp :
    ?pp_start:unit printer ->
    ?pp_stop:unit printer ->
    ?pp_arrow:unit printer ->
    ?pp_sep:unit printer ->
    key printer ->
    'a printer ->
    'a t printer

  (**/**)

  val node_ : key -> 'a -> 'a t -> 'a t -> 'a t
  val balanced : _ t -> bool

  (**/**)
end

module MakeFull (K : KEY) : S with type key = K.t = struct
  type key = K.t
  type weight = int

  type +'a t =
    | E
    | N of key * 'a * 'a t * 'a t * weight

  let empty = E

  let is_empty = function
    | E -> true
    | N _ -> false

  let rec get_exn k m =
    match m with
    | E -> raise Not_found
    | N (k', v, l, r, _) ->
      (match K.compare k k' with
      | 0 -> v
      | n when n < 0 -> get_exn k l
      | _ -> get_exn k r)

  let get k m = try Some (get_exn k m) with Not_found -> None

  let mem k m =
    try
      ignore (get_exn k m);
      true
    with Not_found -> false

  let singleton k v = N (k, v, E, E, K.weight k)

  let weight = function
    | E -> 0
    | N (_, _, _, _, w) -> w

  (* balancing parameters.

     We take the parameters from "Balancing weight-balanced trees", as they
     are rational and efficient. *)

  (* delta=5/2
     delta × (weight l + 1) ≥ weight r + 1
  *)
  let is_balanced l r = 5 * (weight l + 1) >= 2 * (weight r + 1)

  (* gamma = 3/2
      weight l + 1 < gamma × (weight r + 1) *)
  let is_single l r = 2 * (weight l + 1) < 3 * (weight r + 1)

  (* debug function *)
  let rec balanced = function
    | E -> true
    | N (_, _, l, r, _) ->
      is_balanced l r && is_balanced r l && balanced l && balanced r

  (* smart constructor *)
  let mk_node_ k v l r = N (k, v, l, r, weight l + weight r + K.weight k)

  let single_l k1 v1 t1 t2 =
    match t2 with
    | E -> assert false
    | N (k2, v2, t2, t3, _) -> mk_node_ k2 v2 (mk_node_ k1 v1 t1 t2) t3

  let double_l k1 v1 t1 t2 =
    match t2 with
    | N (k2, v2, N (k3, v3, t2, t3, _), t4, _) ->
      mk_node_ k3 v3 (mk_node_ k1 v1 t1 t2) (mk_node_ k2 v2 t3 t4)
    | _ -> assert false

  let rotate_l k v l r =
    match r with
    | E -> assert false
    | N (_, _, rl, rr, _) ->
      if is_single rl rr then
        single_l k v l r
      else
        double_l k v l r

  (* balance towards left *)
  let balance_l k v l r =
    if is_balanced l r then
      mk_node_ k v l r
    else
      rotate_l k v l r

  let single_r k1 v1 t1 t2 =
    match t1 with
    | E -> assert false
    | N (k2, v2, t11, t12, _) -> mk_node_ k2 v2 t11 (mk_node_ k1 v1 t12 t2)

  let double_r k1 v1 t1 t2 =
    match t1 with
    | N (k2, v2, t11, N (k3, v3, t121, t122, _), _) ->
      mk_node_ k3 v3 (mk_node_ k2 v2 t11 t121) (mk_node_ k1 v1 t122 t2)
    | _ -> assert false

  let rotate_r k v l r =
    match l with
    | E -> assert false
    | N (_, _, ll, lr, _) ->
      if is_single lr ll then
        single_r k v l r
      else
        double_r k v l r

  (* balance toward right *)
  let balance_r k v l r =
    if is_balanced r l then
      mk_node_ k v l r
    else
      rotate_r k v l r

  let rec add k v m =
    match m with
    | E -> singleton k v
    | N (k', v', l, r, _) ->
      (match K.compare k k' with
      | 0 -> mk_node_ k v l r
      | n when n < 0 -> balance_r k' v' (add k v l) r
      | _ -> balance_l k' v' l (add k v r))

  (* extract min binding of the tree *)
  let rec extract_min m =
    match m with
    | E -> raise Not_found
    | N (k, v, E, r, _) -> k, v, r
    | N (k, v, l, r, _) ->
      let k', v', l' = extract_min l in
      k', v', balance_l k v l' r

  (* extract max binding of the tree *)
  let rec extract_max m =
    match m with
    | E -> raise Not_found
    | N (k, v, l, E, _) -> k, v, l
    | N (k, v, l, r, _) ->
      let k', v', r' = extract_max r in
      k', v', balance_r k v l r'

  let rec remove k m =
    match m with
    | E -> E
    | N (k', v', l, r, _) ->
      (match K.compare k k' with
      | 0 ->
        (match l, r with
        | E, E -> E
        | E, o | o, E -> o
        | _, _ ->
          if weight l > weight r then (
            (* remove max element of [l] and put it at the root,
               then rebalance towards the left if needed *)
            let k', v', l' = extract_max l in
            balance_l k' v' l' r
          ) else (
            (* remove min element of [r] and rebalance *)
            let k', v', r' = extract_min r in
            balance_r k' v' l r'
          ))
      | n when n < 0 -> balance_l k' v' (remove k l) r
      | _ -> balance_r k' v' l (remove k r))

  let update k f m =
    let maybe_v = get k m in
    match maybe_v, f maybe_v with
    | None, None -> m
    | Some _, None -> remove k m
    | _, Some v -> add k v m

  let rec nth_exn i m =
    match m with
    | E -> raise Not_found
    | N (k, v, l, r, w) ->
      let c = i - weight l in
      (match c with
      | 0 -> k, v
      | n when n < 0 -> nth_exn i l (* search left *)
      | _ ->
        (* means c< K.weight k *)
        if i < w - weight r then
          k, v
        else
          nth_exn (i + weight r - w) r)

  let nth i m = try Some (nth_exn i m) with Not_found -> None

  let get_rank k m =
    let rec aux i k m =
      match m with
      | E ->
        if i = 0 then
          `First
        else
          `After i
      | N (k', _, l, r, _) ->
        (match K.compare k k' with
        | 0 -> `At (i + weight l)
        | n when n < 0 -> aux i k l
        | _ -> aux (1 + weight l + i) k r)
    in
    aux 0 k m

  let rec fold ~f ~x:acc m =
    match m with
    | E -> acc
    | N (k, v, l, r, _) ->
      let acc = fold ~f ~x:acc l in
      let acc = f acc k v in
      fold ~f ~x:acc r

  let rec mapi ~f = function
    | E -> E
    | N (k, v, l, r, w) -> N (k, f k v, mapi ~f l, mapi ~f r, w)

  let rec map ~f = function
    | E -> E
    | N (k, v, l, r, w) -> N (k, f v, map ~f l, map ~f r, w)

  let rec iter ~f m =
    match m with
    | E -> ()
    | N (k, v, l, r, _) ->
      iter ~f l;
      f k v;
      iter ~f r

  let choose_exn = function
    | E -> raise Not_found
    | N (k, v, _, _, _) -> k, v

  let choose = function
    | E -> None
    | N (k, v, _, _, _) -> Some (k, v)

  (* pick an index within [0.. weight m-1] and get the element with
     this index *)
  let random_choose st m =
    let w = weight m in
    if w = 0 then raise Not_found;
    nth_exn (Random.State.int st w) m

  (* make a node (k,v,l,r) but balances on whichever side requires it *)
  let node_shallow_ k v l r =
    if is_balanced l r then
      if is_balanced r l then
        mk_node_ k v l r
      else
        balance_r k v l r
    else
      balance_l k v l r

  (* assume keys of [l] are smaller than [k] and [k] smaller than keys of [r],
     but do not assume anything about weights.
     returns a tree with l, r, and (k,v) *)
  let rec node_ k v l r =
    match l, r with
    | E, E -> singleton k v
    | E, o | o, E -> add k v o
    | N (kl, vl, ll, lr, _), N (kr, vr, rl, rr, _) ->
      let left = is_balanced l r in
      if left && is_balanced r l then
        mk_node_ k v l r
      else if not left then
        node_shallow_ kr vr (node_ k v l rl) rr
      else
        node_shallow_ kl vl ll (node_ k v lr r)

  (* join two trees, assuming all keys of [l] are smaller than keys of [r] *)
  let join_ l r =
    match l, r with
    | E, E -> E
    | E, o | o, E -> o
    | N _, N _ ->
      if weight l <= weight r then (
        let k, v, r' = extract_min r in
        node_ k v l r'
      ) else (
        let k, v, l' = extract_max l in
        node_ k v l' r
      )

  (* if [o_v = Some v], behave like [mk_node k v l r]
      else behave like [join_ l r] *)
  let mk_node_or_join_ k o_v l r =
    match o_v with
    | None -> join_ l r
    | Some v -> node_ k v l r

  let rec split k m =
    match m with
    | E -> E, None, E
    | N (k', v', l, r, _) ->
      (match K.compare k k' with
      | 0 -> l, Some v', r
      | n when n < 0 ->
        let ll, o, lr = split k l in
        ll, o, node_ k' v' lr r
      | _ ->
        let rl, o, rr = split k r in
        node_ k' v' l rl, o, rr)

  let rec merge ~f a b =
    match a, b with
    | E, E -> E
    | E, N (k, v, l, r, _) ->
      let v' = f k None (Some v) in
      mk_node_or_join_ k v' (merge ~f E l) (merge ~f E r)
    | N (k, v, l, r, _), E ->
      let v' = f k (Some v) None in
      mk_node_or_join_ k v' (merge ~f l E) (merge ~f r E)
    | N (k1, v1, l1, r1, w1), N (k2, v2, l2, r2, w2) ->
      if K.compare k1 k2 = 0 then
        (* easy case *)
        mk_node_or_join_ k1 (f k1 (Some v1) (Some v2)) (merge ~f l1 l2)
          (merge ~f r1 r2)
      else if w1 <= w2 then (
        (* split left tree *)
        let l1', v1', r1' = split k2 a in
        mk_node_or_join_ k2 (f k2 v1' (Some v2)) (merge ~f l1' l2)
          (merge ~f r1' r2)
      ) else (
        (* split right tree *)
        let l2', v2', r2' = split k1 b in
        mk_node_or_join_ k1 (f k1 (Some v1) v2') (merge ~f l1 l2')
          (merge ~f r1 r2')
      )

  let cardinal m = fold ~f:(fun acc _ _ -> acc + 1) ~x:0 m
  let add_list m l = List.fold_left (fun acc (k, v) -> add k v acc) m l
  let of_list l = add_list empty l
  let to_list m = fold ~f:(fun acc k v -> (k, v) :: acc) ~x:[] m

  let add_iter m seq =
    let m = ref m in
    seq (fun (k, v) -> m := add k v !m);
    !m

  let of_iter s = add_iter empty s
  let to_iter m yield = iter ~f:(fun k v -> yield (k, v)) m

  let rec add_gen m g =
    match g () with
    | None -> m
    | Some (k, v) -> add_gen (add k v m) g

  let of_gen g = add_gen empty g

  let to_gen m =
    let st = Stack.create () in
    Stack.push m st;
    let rec next () =
      if Stack.is_empty st then
        None
      else (
        match Stack.pop st with
        | E -> next ()
        | N (k, v, l, r, _) ->
          Stack.push r st;
          Stack.push l st;
          Some (k, v)
      )
    in
    next

  let pp ?(pp_start = fun _ () -> ()) ?(pp_stop = fun _ () -> ())
      ?(pp_arrow = fun fmt () -> Format.fprintf fmt "@ -> ")
      ?(pp_sep = fun fmt () -> Format.fprintf fmt ",@ ") pp_k pp_v fmt m =
    pp_start fmt ();
    let first = ref true in
    iter m ~f:(fun k v ->
        if !first then
          first := false
        else
          pp_sep fmt ();
        pp_k fmt k;
        pp_arrow fmt ();
        pp_v fmt v;
        Format.pp_print_cut fmt ());
    pp_stop fmt ()
end

module Make (X : ORD) = MakeFull (struct
  include X

  let weight _ = 1
end)