Source file l2lExpandMetaOp.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
(** Time-stamp: <modified the 05/05/2022 (at 08:40) by Erwan Jahier> *)

open Lxm
open Lic

let dbg = (Lv6Verbose.get_flag "ei")

(* pack useful info into a single struct *)
type local_ctx = { 
  node : Lic.node_exp;
  prg : LicPrg.t;
}

(********************************************************************************)
(* stuff to create fresh var names. *)
let new_var str _lctx type_eff clock_eff = 
  let id = Lv6Id.of_string (FreshName.local_var (str)) in 
  let var =
    { 
      var_name_eff   = id;
      var_nature_eff = AstCore.VarLocal;
      var_number_eff = -1; (* this field is used only for i/o. 
                              Should i rather put something sensible there ? *)
      var_type_eff   = type_eff;
      var_clock_eff  = id, clock_eff;
    }
  in
    var

(********************************************************************************)
(* A small util function followed by a quick unit test. *)
let rec fill i size = if i >= size then [] else (i)::(fill (i+1) size) 
let _ = assert (fill 0 5 = [0;1;2;3;4])
      
let rec (list_map3: 
           ('a -> 'b -> 'c -> 'd) -> 'a list -> 'b list -> 'c list -> 'd list) =
  fun f l1 l2 l3 ->
    match (l1, l2, l3) with
      |	([], [], []) -> []
      | (e1::t1, e2::t2, e3::t3) -> (f e1 e2 e3)::(list_map3 f t1 t2 t3)
      | _ -> (* should not occur *) 
          print_string "*** list_map3 called with lists of different size.\n";
          flush stdout;
          assert false
(********************************************************************************)
(* Some utililities to build Lic expressions *)

(* We generate code that does not correspond to any source *)
let lxm = Lxm.dummy "no_source"

let (val_exp_of_var_info : Lxm.t -> Lic.var_info -> Lic.val_exp) =
  fun lxm vi -> 
    { 
      ve_core = CallByPosLic({src=lxm;it=Lic.VAR_REF vi.var_name_eff}, []); 
      ve_typ  = [vi.var_type_eff];
      ve_clk  = [snd vi.var_clock_eff];
      ve_src  =  lxm
    }

let (val_exp_of_ident : Lxm.t -> string -> Lic.type_ -> Lic.clock -> Lic.val_exp) =
  fun lxm id t clk -> 
    { 
      ve_clk = [clk]; 
      ve_typ = [t]; 
      ve_core = CallByPosLic({it=Lic.VAR_REF id;src=lxm},[]);
      ve_src = lxm
    }

let (val_exp_of_int : Lxm.t -> string -> Lic.clock -> Lic.val_exp) =
  fun lxm i clk -> 
    { 
      ve_clk = [clk]; 
      ve_typ = [Int_type_eff]; 
      ve_core = CallByPosLic({it= CONST(Int_const_eff i);src=lxm},[]);
      ve_src = lxm
    }


let (val_exp_of_const : Lic.const -> Lic.val_exp) =
  fun c -> 
    let _,ve = UnifyClock.const_to_val_eff lxm true UnifyClock.empty_subst c in
    ve

let (add_when : Lic.clock -> Lic.val_exp -> Lic.val_exp) =
  fun clk ve -> 
    { ve with 
      ve_clk = List.map (fun _ -> clk) ve.ve_clk; 
      ve_core = CallByPosLic({it= WHEN clk;src=lxm},[ve]);
    }

(* [add_current ve clk out_cl] return the expression current(ve when clk)  *)
let (add_current : Lic.val_exp -> Lic.clock -> Lic.clock list -> Lic.val_exp) =
  fun ve clk out_cl -> 
    match clk with
    | On((cc,cv,_),sclk) ->
      let lxm = ve.ve_src in
        let clk_exp = val_exp_of_ident lxm cv Bool_type_eff sclk in
        { ve with
          ve_clk = out_cl;  
          ve_core = CallByPosLic({it= CURRENT(Some cc);src=lxm},[clk_exp;ve])
        }
      | _  -> assert false (* SNO *)
   


let rec (elt_type_of_array : Lic.type_ -> Lic.type_) =
  function
    | Array_type_eff(t, _) -> t
    | Abstract_type_eff(_,t) -> elt_type_of_array t
    | _  -> assert false 

let (array_var_to_val_exp : Lxm.t -> int -> var_info -> val_exp) =
  fun lxm i vi -> 
    (* vi holds x of type array and returns  x.[i] *)
    let t_elt = elt_type_of_array vi.var_type_eff in
    let op_flg = {src = lxm ; it = ARRAY_ACCES(i)} in
    { 
      ve_core = CallByPosLic(op_flg, [val_exp_of_var_info lxm vi]); 
      ve_typ  = [t_elt];
      ve_clk  = [snd vi.var_clock_eff];
      ve_src  = lxm
    }

let (node_to_val_exp : Lxm.t -> Lic.node_key -> Lic.type_ list -> Lic.clock list -> 
     val_exp list -> val_exp) =
  fun lxm nk tl cl vel -> 
    let nk = { src = lxm ; it = nk } in
    let core = CallByPosLic( { src = lxm ; it = CALL nk }, vel)  in
    {
      ve_clk = cl;
      ve_typ = tl;
      ve_core = core;
      ve_src  = lxm
    } 
let (binop_to_val_exp : Lxm.t -> Lv6Id.t -> val_exp -> val_exp -> val_exp) =
  fun lxm op ve1 ve2 ->
    let op = { it = PREDEF_CALL({src=lxm;it=("Lustre",op),[]}) ; src = lxm } in
    {
      ve_clk = ve1.ve_clk;
      ve_typ = ve1.ve_typ;
      ve_core = CallByPosLic(op, [ve1; ve2]);
      ve_src  = lxm
    }
let (binop_to_val_exp_bool : Lxm.t -> Lv6Id.t -> val_exp -> val_exp -> val_exp) =
  fun lxm op ve1 ve2 ->
    let op = { it = PREDEF_CALL({src=lxm;it=("Lustre",op),[]}) ; src = lxm } in
    {
      ve_clk = ve1.ve_clk;
      ve_typ = [Bool_type_eff];
      ve_core = CallByPosLic(op, [ve1; ve2]);
      ve_src = lxm
        
    }
let (fby_to_val_exp : Lxm.t -> val_exp -> val_exp -> val_exp) =
  fun lxm ve1 ve2 ->
    let op = { it = FBY ; src = lxm } in
    {
      ve_clk = ve1.ve_clk;
      ve_typ = ve1.ve_typ;
      ve_core = CallByPosLic(op, [ve1; ve2]);
      ve_src = lxm
    }
let (tuple_to_val_exp : Lxm.t -> val_exp list -> val_exp) =
  fun lxm vel ->
    let op = { it = TUPLE ; src = lxm } in
    {
      ve_clk = List.flatten (List.map (fun ve -> ve.ve_clk) vel);
      ve_typ = List.flatten (List.map (fun ve -> ve.ve_typ) vel);
      ve_core = CallByPosLic(op, vel);
      ve_src = lxm
    }
let (ite_to_val_exp : Lxm.t -> val_exp -> val_exp -> val_exp -> val_exp) =
  fun lxm ve1 ve2 ve3 ->
    let ite_op  = { it = PREDEF_CALL({src=lxm;it=("Lustre","if"),[]}); src = lxm } in
    {
      ve_clk = ve2.ve_clk; 
      ve_typ = ve2.ve_typ;
      ve_core = CallByPosLic(ite_op, [ve1; ve2; ve3]) ;
      ve_src = lxm
    } 

let (array_var_to_left : int -> var_info -> Lic.left) =
  fun i vi -> 
    let lp = LeftVarLic(vi,lxm) in
    let t_elt = elt_type_of_array vi.var_type_eff in
    LeftArrayLic(lp,i,t_elt)


let (create_fillred_body: local_ctx -> Lic.static_arg list ->
     Lic.node_body * var_info list) =
  fun lctx sargs ->
    (* Given 
       - a node n of type : tau * tau_1 * ... * tau_n -> tau * teta_1 * ... * teta_l
       - a integer c
       
       the fillred expression has the profile: 
       tau * tau_1^c * ... * tau_n^c  -> tau * teta_1^c * ... * teta_l^c
    *)
    let iter_node,c = match List.sort compare sargs with
      | [ConstStaticArgLic(_,Int_const_eff(c));NodeStaticArgLic(_,_node_key)]
      | [ConstStaticArgLic(_,Int_const_eff(c));TypeStaticArgLic(_);
         NodeStaticArgLic(_,_node_key)]
        -> 
        _node_key,c
      | _ -> assert false
    in
    let lxm = lctx.node.Lic.lxm in
    let iter_node = Lxm.flagit iter_node lxm in
        (*
          Hence:
          node(acc_in:tau; X1:tau_1^c ; ... ; Xn:tau_n^c) 
          returns (acc_out:tau; Y1:teta_1^c; ... ; Yl:teta_l^c) = fillred<<n,c>>;
         *)
    assert (lctx.node.Lic.inlist_eff <> []);
    assert (lctx.node.Lic.outlist_eff <> []);
    let (acc_in : var_info)      = List.hd lctx.node.Lic.inlist_eff  in
    let (y1_yl  : var_info list) = List.tl lctx.node.Lic.inlist_eff  in
    let (acc_out: var_info)      = List.hd lctx.node.Lic.outlist_eff in
    let (x1_xn  : var_info list) = List.tl lctx.node.Lic.outlist_eff in
        (*
          can be defined like this:
          node(acc_in:tau; X1:tau_1^c ; ... ; Xn:tau_n^c) 
          returns (acc_out:tau; Y1 : teta1^c; ... ; Yl: teta_l^c) =
          var
          acc_1, ..., acc_c-2 : tau;
          let 
          
          acc_1, Y1[0], ... ,Yl[0] = n(acc_in,X1[0], ... ,Xk[0]);
          acc_2, Y1[1], ... ,Yl[1] = n(acc_1, X1[1], ... ,Xk[1]);
          ... 
          acc_i+1, Y1[i], ... ,Yl[i] = n(acc_i,X1[i], ... ,Xk[i]);
          ...
          acc_out, Y1[c-1], ... ,Yl[c-1] = n(acc_c-1,X1[c-1], ... ,Xk[c-1]);
          
	       « for all i = 0, ..., c-1 » 
          acc_i+1, Y1[i], ... ,Yl[i] = n(acc_i,X1[i], ... ,Xk[i])
          tel
        *)
    let c = int_of_string c in
    let index_list = fill 0 c in        
        (* Building this list "acc_left_list" as [acc_1, ..., acc_c-2, acc_out] *)
    let type_exp,clock_exp = acc_in.var_type_eff, snd acc_in.var_clock_eff in
    let (acc_vars : var_info list) =
      let rec f i acc = if i = 0 then acc else
          f (i-1) ((new_var "acc" lctx type_exp clock_exp)::acc)
      in
      List.rev(f (c-1) [])
    in
    let (acc_left_list : left list) =
      (List.map (fun vi -> LeftVarLic(vi,lxm)) (acc_vars@[acc_out]))
    in
        (* Ditto for rigth part :  [acc_in, acc_1, ..., acc_c-1]*)
    let (acc_rigth_list : val_exp list) =
      List.map (val_exp_of_var_info lxm) (acc_in::acc_vars)
    in
    let neqs =
          (*
            So now we build those equations ;
            acc_1, Y1[0], ... ,Yl[0] = n(acc_in,X1[0], ... ,Xk[0]);
            acc_2, Y1[1], ... ,Yl[1] = n(acc_1, X1[1], ... ,Xk[1]);
            ... 
            acc_i+1, Y1[i], ... ,Yl[i] = n(acc_i,X1[i], ... ,Xk[i]);
            ...
            acc_out, Y1[c-1], ... ,Yl[c-1] = n(acc_c-1,X1[c-1], ... ,Xk[c-1]);
          *)
      list_map3
        (fun i acc_left acc_rigth ->
          let (xi_j:val_exp list) = (* X1[i], ... ,Xn[i] *)
            List.map (array_var_to_val_exp lxm i) y1_yl
          in
          let args = acc_rigth::xi_j in
          let (yi_k : left list) =  (* Y1[i], ... ,Yl[i] *)
            List.map (array_var_to_left i) x1_xn
          in
          let lhs = acc_left::yi_k in
		    let cl = 
            List.map (fun l -> snd (Lic.var_info_of_left l).var_clock_eff) lhs
          in
          let rhs = {
            ve_typ = List.map Lic.type_of_left lhs;
            ve_clk = cl;
            ve_core = 
              if AstPredef.is_a_predef_op (snd(fst iter_node.it)) then
                CallByPosLic({src=lxm;it=(Lic.PREDEF_CALL iter_node)}, args)
              else
                CallByPosLic({src=lxm;it=(CALL iter_node)}, args);
            ve_src = lxm
          }
          in
		    let eq = { src = lxm ; it = (lhs, rhs) } in
          eq 
        )
        index_list
        acc_left_list
        acc_rigth_list
    in
    { asserts_eff = []; eqs_eff = List.rev neqs }, acc_vars

let (create_map_body: local_ctx -> Lic.static_arg list -> Lic.node_body * var_info list) =
  fun lctx sargs ->
	 (* Given
	    - a node n of type: tau_1 * ... * tau_n -> teta_1 * ... * teta_l
	    - and an integer c
       
	    The profile of map<<node,c>> is:
  	    tau_1^c * ... * tau_n^c -> teta_1^c * ... * teta_l^c
       and
       
	    Y1, ... ,Yl = map<<node; c>>(X1,...,Xk)
       <=>
	    for all i = 0, ..., c-1; (Y1[i], ... ,Yl[i]) = N(X_1[i], ... ,X_k[i])
    *)
    let iter_node,c = match List.sort compare sargs with
      | [ConstStaticArgLic(_,Int_const_eff(c)) ; NodeStaticArgLic(_,node_key)]
      | [ConstStaticArgLic(_,Int_const_eff(c)) ; TypeStaticArgLic(_);
         NodeStaticArgLic(_,node_key)]
        -> 
        node_key,c
      | _ -> assert false
    in
    let iter_node = Lxm.flagit iter_node lxm in
    let (y1_yl  : var_info list) = lctx.node.Lic.inlist_eff  in
    let (x1_xn  : var_info list) = lctx.node.Lic.outlist_eff in
    let c = int_of_string c in
    let index_list = fill 0 c in        
    let neqs =
      List.map
        (fun i ->
          let (xi_j:val_exp list) = (* X1[i], ... ,Xn[i] *)
            List.map (array_var_to_val_exp lxm i) y1_yl
          in
          let (lhs : left list) =  (* Y1[i], ... ,Yl[i] *)
            List.map (array_var_to_left i) x1_xn
          in
	  let cl =
            List.map (fun l -> snd (Lic.var_info_of_left l).var_clock_eff) lhs
          in
          let p,n = fst iter_node.it in
          let rhs = {
            ve_typ = List.map Lic.type_of_left lhs;
            ve_clk = cl;
            ve_core =
              if p="Lustre" && AstPredef.is_a_predef_op n then
                CallByPosLic({src=lxm;it=(Lic.PREDEF_CALL iter_node)}, xi_j)
              else
                CallByPosLic({src=lxm;it=(CALL iter_node)}, xi_j);
            ve_src = lxm
          }
          in
	  let eq = { src = lxm ; it = (lhs, rhs) } in
          eq 
        )
        index_list
    in

    { asserts_eff = []; eqs_eff = List.rev neqs }, []

let (create_boolred_body: local_ctx -> int -> int -> int -> Lic.node_body * var_info list) =
  fun lctx i j k ->
    (* Given - 3 integers i, j, k boolred<<i,j,k>> has the profile: bool^n -> bool
       and is defined by
       node toto = boolred<<i,j,k>>(tab); 
       <=>
       node toto(tab:bool^n) returns (res:bool);
       var 
         cpt:int;
         let 
           cpt = (if tab[0] then 1 else 0) + ... + (if tab[k-1] then 1 else 0);
           res = i <= cpt && cpt <= j;
         tel
    *)
    assert(0 <= i && i <= j && j <= k && k>0);
    let lxm = lctx.node.Lic.lxm in
    let (tab_vi : var_info) = match lctx.node.Lic.inlist_eff with
      | [vi] -> vi 
      | _ -> assert false
    in
    let (res_vi : var_info) = match lctx.node.Lic.outlist_eff with
      | [vi] -> vi 
      | _ -> assert false
    in
    let (cpt_vi : var_info) = new_var "cpt" lctx Int_type_eff BaseLic in
    let cpt_left = LeftVarLic (cpt_vi,lxm) in
    let zero = val_exp_of_int lxm "0" BaseLic
    and one = val_exp_of_int lxm  "1" BaseLic in
    let index_list = fill 0 k in (* [0;1; ...;k-1]*)
    let (ite_list:Lic.val_exp list) = List.map
      (fun i -> (* returns [if A[i] then 1 else 0]_i=0,k-1 *)
        let tab_ve_i = array_var_to_val_exp lxm i tab_vi in
        ite_to_val_exp lxm tab_ve_i one zero
      )
      index_list
    in
    let cpt_rigth =
      assert(ite_list<>[]);
      List.fold_left (binop_to_val_exp lxm "plus")
                     (List.hd ite_list) (List.tl ite_list) in
    let res_left = LeftVarLic (res_vi,lxm) in
    let res_rigth = (* i <= cpt && cpt <= j; *)
      let i_eff   = val_exp_of_int lxm (string_of_int i) BaseLic in
      let j_eff   = val_exp_of_int lxm (string_of_int j) BaseLic in
      let cpt_eff = val_exp_of_var_info lxm cpt_vi in
      let i_inf_cpt = binop_to_val_exp_bool lxm "lte" i_eff cpt_eff in
      let cpt_inf_j = binop_to_val_exp_bool lxm  "lte" cpt_eff j_eff in
      binop_to_val_exp lxm  "and" i_inf_cpt cpt_inf_j
    in 
    let cpt_eq = { src = lxm ; it = ([cpt_left], cpt_rigth) } in
    let res_eq = { src = lxm ; it = ([res_left], res_rigth) } in
    { 
      asserts_eff = []; 
      eqs_eff = [cpt_eq; res_eq] 
    }, [cpt_vi]

let rec (replace_base : Lic.clock -> Lic.clock -> Lic.clock) =
  fun ck1 ck2  -> 
    match ck2 with
      | BaseLic -> ck1
      | On(x,sck)  -> On(x,replace_base sck ck2)
      | ClockVar _ -> assert false

let (create_condact_body: local_ctx -> Lic.static_arg list -> Lic.node_body * var_info list) =
  fun lctx sargs ->
    (*
      node condact_plus_0(i0:bool; i1:int; i2:int) returns (o0:int) = Lustre::condact<<toto, 0>>;

      <=>

      o0 = if i0 then current(toto(i1 when i0, i2 when i0) ) else (0 fby o0);

      Lustre::condact<<Lustre::plus, 0>>;
    *)
    let lxm = lctx.node.Lic.lxm in
    let node,c = match List.sort compare sargs with
      | [ConstStaticArgLic(_, c);TypeStaticArgLic(_);NodeStaticArgLic(_, node_key)]
      | [ConstStaticArgLic(_, c) ; NodeStaticArgLic(_, node_key)]
        -> node_key,c
      | _ -> assert false
    in
    let cond_exp, inputs = 
      match List.map (val_exp_of_var_info lxm) lctx.node.Lic.inlist_eff with
          [] -> assert false
        | x::t -> x,t
    in 
    let outputs_clk = List.map (fun var -> snd var.var_clock_eff) lctx.node.Lic.outlist_eff in
    let left = List.map (fun x -> LeftVarLic (x,lxm)) lctx.node.Lic.outlist_eff in
    let node_out_type_list = 
      List.map (fun x -> x.Lic.var_type_eff) lctx.node.Lic.outlist_eff 
    in
    let true_cc = ("Lustre","true") in
    let i0 = List.hd lctx.node.Lic.inlist_eff in
    let i0_clk = Lic.On((true_cc, i0.var_name_eff,Bool_type_eff), snd i0.var_clock_eff) in
    let inputs_when_i0 = List.map (add_when i0_clk) inputs in    
    let outputs_clk_when_i0 = (* replace baseLic by i0_clk *)
      List.map (replace_base i0_clk) outputs_clk
    in
    let then_exp =
      node_to_val_exp lxm node node_out_type_list outputs_clk_when_i0 inputs_when_i0
    in
    let then_exp = add_current then_exp i0_clk outputs_clk in
    let const_exp = val_exp_of_const c in
    let out_exp = match lctx.node.Lic.outlist_eff with 
        [o] -> val_exp_of_var_info lxm o 
      | _ -> tuple_to_val_exp lxm
        (List.map (val_exp_of_var_info lxm) lctx.node.Lic.outlist_eff)
    in
    let else_exp = fby_to_val_exp lxm const_exp out_exp in
    let rigth = ite_to_val_exp lxm cond_exp then_exp else_exp in
    let eq = { src = lxm ; it = (left, rigth) } in
    { asserts_eff = []; eqs_eff = [eq] }, []

let ios = int_of_string

let (create_merge_body: local_ctx -> Lic.static_arg list -> Lic.node_body * var_info list) =
  fun _lctx _sargs ->
    assert false (* XXX finish me! *)

let (create_meta_op_body:  local_ctx -> Lic.node_key -> Lic.node_body * var_info list) =
  fun lctx (nk,sargs) ->
    match nk with
      | "Lustre", "fill" 
      | "Lustre", "red" 
      | "Lustre", "fillred" -> create_fillred_body lctx sargs
      | "Lustre", "map"     -> create_map_body lctx sargs
      | "Lustre", "boolred" -> (
        let (i,j,k) =
          match sargs with 
            | [ConstStaticArgLic(_, Int_const_eff i);
               ConstStaticArgLic(_, Int_const_eff j);
               ConstStaticArgLic(_, Int_const_eff k)
              ] -> 
              (ios i,ios j,ios k)
            | _ -> assert false
        in
        create_boolred_body lctx i j k  
      )
      | "Lustre", "diese" -> (
        (* a diese is a particular kind of boolred:
           #(A,...,an) = boolred(0,1,n)([a1,...,an])
        *)
        let n = List.length lctx.node.Lic.inlist_eff in
        create_boolred_body lctx 0 1 n 
      )
      | "Lustre", "nor" -> (
        (* a nor is a particular kind of boolred too:
           nor(A,...,an) = boolred(0,0,n)([a1,...,an])
        *)
        let n = List.length lctx.node.Lic.inlist_eff in
        create_boolred_body lctx 0 0 n 
      )
      | "Lustre", "condact" -> create_condact_body lctx sargs
      | "Lustre", "merge"   -> create_merge_body lctx sargs
      | _,_  -> assert false


let rec (node : local_ctx -> Lic.node_exp -> bool -> Lic.node_exp) =
  fun lctx n only_boolred ->
    let sonk = Lic.string_of_node_key in
    Lv6Verbose.exe ~flag:dbg (fun () ->
      Printf.printf "#DBG: L2lInlineMetaOp %s\n" (sonk n.node_key_eff));
    match n.def_eff with
    | MetaOpLic ->
      if only_boolred && (fst n.node_key_eff) <> ("Lustre", "boolred") then n else
        let nk = n.node_key_eff in
        let nbody, nlocs = create_meta_op_body lctx nk in
        { n with 
          def_eff = BodyLic nbody;
          loclist_eff = Some nlocs;
        }
    | ExternLic 
    | AbstractLic None -> n
    | AbstractLic (Some pn) ->
      { n with def_eff = AbstractLic (Some (node lctx pn only_boolred)) }
    | BodyLic _b -> n
      
(* exported *)
let (doit :  LicPrg.t -> LicPrg.t) =
  fun inprg -> 
    let outprg = LicPrg.empty in
    (* types and constants do not change *)
    let outprg = LicPrg.fold_types  LicPrg.add_type  inprg outprg in
    let outprg = LicPrg.fold_consts LicPrg.add_const inprg outprg in
    (* transform nodes *)
    let  (do_node : Lic.node_key -> Lic.node_exp -> LicPrg.t -> LicPrg.t) = 
      fun nk ne outprg -> 
        let lctx = {
          node = ne;
          prg = inprg;
        }
        in
        let ne = node lctx ne false in
        LicPrg.add_node nk ne outprg
    in
    let outprg = LicPrg.fold_nodes do_node inprg outprg in
    outprg
(* exported *)

let (doit_boolred :  LicPrg.t -> LicPrg.t) =
  fun inprg -> 
    let outprg = LicPrg.empty in
    (* types and constants do not change *)
    let outprg = LicPrg.fold_types  LicPrg.add_type  inprg outprg in
    let outprg = LicPrg.fold_consts LicPrg.add_const inprg outprg in
    (* transform nodes *)
    let  (do_node : Lic.node_key -> Lic.node_exp -> LicPrg.t -> LicPrg.t) = 
      fun nk ne outprg -> 
        let lctx = {
          node = ne;
          prg = inprg;
        }
        in
        let ne = node lctx ne true in
        LicPrg.add_node nk ne outprg
    in
    let outprg = LicPrg.fold_nodes do_node inprg outprg in
    outprg