Source file Rat_lit.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

type term = Term.t

module T = Term
module S = Subst
module P = Position
module M = Monome
module MF = Monome.Focus

(** {2 Type Decls} *)

type op =
  | Equal
  | Less

type t = {
  op: op;
  left: Q.t Monome.t;
  right: Q.t Monome.t;
}

type lit = t

(** {2 Basics} *)

let equal lit1 lit2 =
  lit1.op = lit2.op &&
  M.equal lit1.left lit2.left &&
  M.equal lit1.right lit2.right

let equal_com lit1 lit2 = match lit1.op with
  | Less -> equal lit1 lit2
  | Equal ->
    lit1.op = lit2.op &&
    ( (M.equal lit1.left lit2.left &&
       M.equal lit1.right lit2.right) ||
      (M.equal lit1.left lit2.right &&
       M.equal lit1.right lit2.left))

let cmp_op : op -> op -> int = CCOrd.compare

let compare lit1 lit2 =
  let open CCOrd.Infix in
  cmp_op lit1.op lit2.op
  <?> (M.compare, lit1.left, lit2.left)
  <?> (M.compare, lit1.right, lit2.right)

let hash lit =
  CCHash.combine3
    (CCHash.poly lit.op)
    (M.hash lit.left)
    (M.hash lit.right)

let is_eq t = t.op = Equal
let is_less t = t.op = Less

(* main constructor *)
let make op m1 m2 =
  let m1, m2 = Monome.normalize m1, Monome.normalize m2 in
  let m = M.difference m1 m2 in
  (* build from a single monome *)
  let m1, m2 = M.split m in
  {op; left=m1; right=m2}

let mk_eq = make Equal
let mk_less = make Less

let pp out m =
  Format.fprintf out "%a %s %a"
    M.pp m.left
    (match m.op with Equal -> "=" | Less -> "<")
    M.pp m.right

let pp_tstp out m = match m.op with
  | Equal ->
    Format.fprintf out "%a = %a" M.pp_tstp m.left M.pp_tstp m.right
  | Less ->
    Format.fprintf out "$less(%a, %a)" M.pp_tstp m.left M.pp_tstp m.right

let pp_zf out m = match m.op with
  | Equal -> Format.fprintf out "%a = %a" M.pp_zf m.left M.pp_zf m.right
  | Less -> Format.fprintf out "(%a < %a)" M.pp_zf m.left M.pp_zf m.right

let to_string = CCFormat.to_string pp_tstp

(** {2 Operators} *)

let map f m = make m.op (M.map f m.left)(M.map f m.right)

let fold f acc m =
  let acc = Iter.fold f acc (Monome.Seq.terms m.left) in
  Iter.fold f acc (Monome.Seq.terms m.right)

type ('subst,'a) unif =
  subst:'subst -> 'a Scoped.t -> 'a Scoped.t -> 'subst Iter.t

(* match {x1,y1} in scope 1, with {x2,y2} with scope2 *)
let unif4 op ~subst x1 y1 sc1 x2 y2 sc2 k =
  op ~subst (Scoped.make x1 sc1) (Scoped.make x2 sc2)
    (fun subst -> op ~subst (Scoped.make y1 sc1) (Scoped.make y2 sc2) k);
  op ~subst (Scoped.make y1 sc1) (Scoped.make x2 sc2)
    (fun subst -> op ~subst (Scoped.make x1 sc1) (Scoped.make y2 sc2) k);
  ()

let generic_unif m_unif ~subst (lit1,sc1) (lit2,sc2) k =
  let x1 = lit1.left
  and y1 = lit1.right
  and x2 = lit2.left
  and y2 = lit2.right in
  begin match lit1.op, lit2.op with
    | Equal, Equal ->
      (* try both ways *)
      unif4 m_unif ~subst x1 y1 sc1 x2 y2 sc2 k
    | Less, Less ->
      m_unif ~subst (x1,sc1) (x2,sc2)
        (fun subst -> m_unif ~subst (y1,sc1) (y2,sc2) k)
    | Equal, Less
    | Less, Equal -> ()
  end

let unify ?(subst=Unif_subst.empty) lit1 lit2 =
  generic_unif (fun ~subst -> M.unify ~subst) ~subst lit1 lit2

let matching ?(subst=Subst.empty) lit1 lit2 =
  generic_unif (fun ~subst -> M.matching ~subst) ~subst lit1 lit2

let variant ?(subst=Subst.empty) lit1 lit2 =
  generic_unif (fun ~subst -> M.variant ~subst) ~subst lit1 lit2

(* Interesting sub-part of the prover. This subsumption relation must be
   a subset of the implication relation, be decidable, but yet be as powerful
   as possible. A few examples:

    a ≤ 10 subsumes  2.a ≤ 21
    a = 1  subsumes a ≥ 0
    a ≥ 0  subsumes a ≥ -10
    2.a ≤ 10 subsumes a ≤ 11
*)
module Subsumption = struct
  (* verify postcondition of [matching] *)
  let _matching_postcond (m1,sc1) (m2,sc2) (subst,c1,c2) =
    let m1 = M.apply_subst Subst.Renaming.none subst (m1,sc1) in
    let m1 = M.product m1 c1
    and m2 = M.product m2 c2 in
    let d = M.difference m1 m2 in
    M.is_const d
    ||
    (
      Util.debugf 5 "@[<2>postcond:@ %a[%d] scaled %s,@ and %a[%d] scaled %s@ with %a@]"
        (fun k->k M.pp m1 sc1 (Q.to_string c1) M.pp m2 sc2 (Q.to_string c2) S.pp subst);
      false
    )

  (* match lists together exactly. No scaling authorized *)
  let rec match_lists ~protect ~subst l1 rest1 sc1 l2 sc2 k = match l1, l2 with
    | [], [] ->
      if rest1 = []
      then k subst
    | _, []
    | [], _ -> ()
    | (c1,t1)::l1', (c2,t2)::l2' when Q.leq c1 c2  ->
      begin try
          let subst =
            Unif.FO.matching_adapt_scope
              ~protect ~subst ~pattern:(Scoped.make t1 sc1) (Scoped.make t2 sc2)
          in
          if Q.equal c1 c2
          then match_lists ~protect ~subst
              (rest1 @ l1') [] sc1 l2' sc2 k
          else match_lists ~protect ~subst
              l1' rest1 sc1 ((Q.(c2 - c1),t2)::l2') sc2 k
        with Unif.Fail -> ()
      end;
      (* ignore [t1] for now *)
      match_lists ~protect ~subst l1' ((c1,t1)::rest1) sc1 l2 sc2 k
    | (c1,t1)::l1', (c2,_t2)::_l2' ->
      (* cannot match, c1 too high *)
      assert Q.(gt c1 zero);
      assert Q.(gt c2 zero);
      match_lists ~protect ~subst l1' ((c1,t1)::rest1) sc1 l2 sc2 k

  (* matching that is allowed to scale m1, and, if [scale2] is true, to
     scale [m2] too. Constants are not taken into account.
     [k] is called with [subst, c1, c2] where [c_i] is the scaling coefficient
     for [m_i].
     postcondition: for a result (subst,c1,c2),
      c1 * subst(m1.terms) = c2 * subst(m2.terms) *)
  let matching ~protect ~subst m1 sc1 m2 sc2 k =
    (* match some terms of [l1] with the given term [t2].
       [c1] is the accumulated coefficient for terms of [l1] so far. *)
    let rec init_with_coeff ~subst c1 l1 rest1 t2 c2 rest2 =
      begin match l1 with
        | [] when Q.(equal c1 zero) ->
          () (* no match with [t2]: no term matches [t2] *)
        | [] ->
          (* ok, we did match some terms with [t2]. Scale coefficients if
              possible, possibly changing their sign, otherwise fail  *)
          assert Q.(gt c1 zero);
          assert Q.(gt c2 zero);
          (* we take the [max] of coefficients, and multiply
             the first monome with [c2/max] and the second with [c1/max] *)
          let g = Q.max c1 c2 in
          check_other_terms ~subst
            ~scale1:(Q.div c2 g)
            ~scale2:(Q.div c1 g)
            rest1 rest2
        | (c1',t1) :: l1' ->
          (* choose [t1], if possible, and then extend the substitution for t2 *)
          begin try
              let subst = Unif.FO.matching_adapt_scope ~protect ~subst
                  ~pattern:(Scoped.make t1 sc1) (Scoped.make t2 sc2) in
              init_with_coeff ~subst Q.(c1 + c1') l1' rest1 t2 c2 rest2
            with Unif.Fail -> ()
          end;
          (* disregard [t1] *)
          init_with_coeff ~subst c1 l1' ((c1',t1)::rest1) t2 c2 rest2
      end
    (* match other terms with the given scaling coeff *)
    and check_other_terms ~subst ~scale1 ~scale2 l1 l2 =
      let l1 = List.map (fun (c,t) -> Q.(c * scale1), t) l1
      and l2 = List.map (fun (c,t) -> Q.(c * scale2), t) l2 in
      match_lists ~protect ~subst l1 [] sc1 l2 sc2
        (fun subst ->
           assert (_matching_postcond (Scoped.make m1 sc1) (Scoped.make m2 sc2) (subst, scale1, scale2));
           k (subst, scale1, scale2))
    in
    begin match M.coeffs m2 with
      | [] ->
        begin match M.coeffs m1 with
          | [] -> k (subst,Q.one,Q.one)
          | _::_ -> ()  (* fail *)
        end
      | (c2,t2)::l2 ->
        (* start with matching terms of [m1] with [t2] *)
        init_with_coeff ~subst Q.zero (M.coeffs m1) [] t2 c2 l2
    end

  (* match l1 with l2, and r1 with r2, with the same scaling coefficient *)
  let matching2 ~subst l1 r1 sc1 l2 r2 sc2 k =
    let protect = Iter.append (M.Seq.vars l2) (M.Seq.vars r2) in
    if M.is_const l1 && M.is_const l2 then
      (* only one problem *)
      matching ~protect ~subst r1 sc1 r2 sc2 k
    else
      matching ~protect ~subst l1 sc1 l2 sc2
        (fun (subst,c1,c2) ->
           let r1 = List.map (fun (c,t) -> Q.(c * c1), t) (M.coeffs r1)
           and r2 = List.map (fun (c,t) -> Q.(c * c2), t) (M.coeffs r2) in
           match_lists ~protect ~subst r1 [] sc1 r2 sc2
             (fun subst -> k (subst,c1,c2)))

  let check ~subst lit1 sc1 lit2 sc2 k =
    let l1 = lit1.left
    and r1 = lit1.right
    and l2 = lit2.left
    and r2 = lit2.right in
    begin match lit1.op, lit2.op with
      | Equal, Equal ->
        (* match modulo commutativity *)
        matching2 ~subst l1 r1 sc1 l2 r2 sc2
          (fun (subst, c1, c2) ->
             if Q.(equal
                   (c1 * (M.const r1 - M.const l1))
                   (c2 * (M.const r2 - M.const l2)))
             then k subst);
        matching2 ~subst l1 r1 sc1 r2 l2 sc2
          (fun (subst, c1, c2) ->
             if Q.(equal
                   (c1 * (M.const r1 - M.const l1))
                   (c2 * (M.const l2 - M.const r2)))
             then k subst)
      | Equal, Less ->
        (* l1=r1  can subsume l2<r2 if
           r1.const-l1.const = subst(l1-r1) = l2-r2 < r2.const - l2.const
           with r1.const-l1.const < r2.const - l2.const (tighter bound) *)
        matching2 ~subst l1 r1 sc1 l2 r2 sc2
          (fun (subst, c1, c2) ->
             if Q.(lt
                   (c1 * (M.const r1 - M.const l1))
                   (c2 * (M.const r2 - M.const l2)))
             then k subst)
      | Less, Less ->
        (* if subst(r1 - l1) = r2-l2 - k where k≥0, then l1<r1 => l2+k<r2 => l2<r2
            so l1<r1 subsumes l2<r2. *)
        matching2 ~subst l1 r1 sc1 l2 r2 sc2
          (fun (subst, c1, c2) ->
             (* we removed all terms but the constants,
                 l1-r1 = l2-r2. Now lit1= l1-r1 < r1.const-l1.const,
                 so if r1.const-l1.const < r2.const - l2.const then lit1 => lit2 *)
             if Q.(leq
                   (c1 * (M.const r1 - M.const l1))
                   (c2 * (M.const r2 - M.const l2)))
             then k subst);
      | _ -> () (* fail *)
    end
end

let subsumes ?(subst=Subst.empty) (lit1,sc1) (lit2, sc2) k =
  Subsumption.check ~subst lit1 sc1 lit2 sc2 k

let are_variant lit1 lit2 =
  not (Iter.is_empty (variant (lit1, 0)(lit2, 1)))

let apply_subst renaming subst (lit,scope) =
  make lit.op
    (M.apply_subst renaming subst (lit.left, scope))
    (M.apply_subst renaming subst (lit.right, scope))

let apply_subst_no_simp renaming subst (lit,sc) =
  {lit with
     left=M.apply_subst_no_simp renaming subst (lit.left, sc);
     right=M.apply_subst_no_simp renaming subst (lit.right, sc);
  }

let is_trivial lit = match lit.op with
  | Equal -> M.equal lit.left lit.right
  | Less -> M.dominates ~strict:true lit.right lit.left

let is_absurd lit = match lit.op with
  | Equal ->
    let m = M.difference lit.left lit.right in
    M.is_const m && M.sign m <> 0
  | Less -> M.dominates ~strict:false lit.left lit.right

let fold_terms ?(pos=P.stop) ?(vars=false) ?ty_args ~which ~ord ~subterms lit k =
  (* function to call at terms *)
  let at_term ~pos t k =
    if subterms
    then T.all_positions ?ty_args ~vars ~pos t k
    else (* don't do anything if [t] is a var and [vars=false] *)
    if vars || not (T.is_var t) then k (t,pos)
  and fold_monome = match which with
    | `All -> M.fold
    | `Max -> M.fold_max ~ord
  in
  fold_monome
    (fun () i _ t -> at_term ~pos:P.(append pos (left (arg i stop))) t k)
    () lit.left;
  fold_monome
    (fun () i _ t -> at_term ~pos:P.(append pos (right (arg i stop))) t k)
    () lit.right;
  ()

let _to_coeffs lit =
  Iter.append (M.Seq.coeffs_swap lit.left) (M.Seq.coeffs_swap lit.right)

(* FIXME: ignore multiplicities, for now, but would need to
   bring everything to same numerator? *)
let to_multiset lit =
  _to_coeffs lit |> Iter.map fst
  |> Multisets.MT.Seq.of_seq Multisets.MT.empty

let max_terms ~ord lit =
  let m = to_multiset lit in
  Multisets.MT.max (Ordering.compare ord) m
  |> Multisets.MT.to_list
  |> List.map fst

let to_form m =
  let t1 = M.Rat.to_term m.left in
  let t2 = M.Rat.to_term m.right in
  begin match m.op with
    | Equal -> SLiteral.eq t1 t2
    | Less ->
      let t = T.app_builtin Builtin.Less ~ty:Type.prop [T.ty t1 |> T.of_ty; t1; t2] in
      SLiteral.atom t true
  end

let to_term m: term =
  let m1 = M.Rat.to_term m.left in
  let m2 = M.Rat.to_term m.right in
  begin match m.op with
    | Equal -> T.app_builtin ~ty:Type.prop Builtin.Eq [m1; m2]
    | Less -> T.app_builtin ~ty:Type.prop Builtin.Less [m1; m2]
  end

(** {2 Iterators} *)

module Seq = struct
  let terms lit k = M.Seq.terms lit.left k; M.Seq.terms lit.right k
  let vars lit = terms lit |> Iter.flat_map T.Seq.vars
  let to_multiset = _to_coeffs
end

(** {2 Focus on a Term} *)

module Focus = struct
  (** focus on a term in one of the two monomes *)
  type t =
    | Left of op * Q.t Monome.Focus.t * Q.t Monome.t
    | Right of op * Q.t Monome.t * Q.t Monome.Focus.t

  let mk_left op mf m = Left (op, mf, m)
  let mk_right op m mf = Right (op, m, mf)

  let get lit pos = match pos with
    | P.Left (P.Arg (i, _)) ->
      Some (Left (lit.op, M.Focus.get lit.left i, lit.right))
    | P.Right (P.Arg (i, _)) ->
      Some (Right (lit.op, lit.left, M.Focus.get lit.right i))
    | _ -> None

  let get_exn lit pos = match get lit pos with
    | None ->
      invalid_arg
        (CCFormat.sprintf "wrong position %a for focused arith lit %a"
           P.pp pos pp lit)
    | Some x -> x

  let focus_term lit t =
    begin match M.Focus.focus_term lit.left t with
      | Some mf1 ->
        assert (not (M.mem lit.right t));
        Some (Left (lit.op, mf1, lit.right))
      | None ->
        match M.Focus.focus_term lit.right t with
          | None -> None
          | Some mf2 -> Some (Right (lit.op, lit.left, mf2))
    end

  let focus_term_exn lit t = match focus_term lit t with
    | None -> failwith "ALF.focus_term_exn"
    | Some lit' -> lit'

  let replace a by = match a with
    | Left (op, mf, m) -> make op (M.sum (MF.rest mf) by) m
    | Right (op, m, mf) -> make op m (M.sum (MF.rest mf) by)

  let focused_monome = function
    | Left (_, mf, _)
    | Right (_, _, mf) -> mf

  let opposite_monome = function
    | Left (_, _, m)
    | Right (_, m, _) -> m

  let term lit = MF.term (focused_monome lit)

  let fold_terms ?(pos=P.stop) lit k =
    MF.fold_m ~pos:P.(append pos (left stop)) lit.left ()
      (fun () mf pos -> k (Left (lit.op, mf, lit.right), pos));
    MF.fold_m ~pos:P.(append pos (right stop)) lit.right ()
      (fun () mf pos -> k (Right (lit.op, lit.left, mf), pos))

  (* is the focused term maximal in the arithmetic literal? *)
  let is_max ~ord = function
    | Left (_, mf, m)
    | Right (_, m, mf) ->
      let t = MF.term mf in
      let terms = Iter.append (M.Seq.terms m) (MF.rest mf |> M.Seq.terms) in
      Iter.for_all
        (fun t' -> Ordering.compare ord t t' <> Comparison.Lt)
        terms

  (* is the focused term maximal in the arithmetic literal? *)
  let is_strictly_max ~ord = function
    | Left (_, mf, m)
    | Right (_, m, mf) ->
      let t = MF.term mf in
      Iter.for_all
        (fun t' -> Ordering.compare ord t t' = Comparison.Gt)
        (M.Seq.terms m)
      &&
      Iter.for_all
        (fun t' -> Ordering.compare ord t t' = Comparison.Gt)
        (MF.rest mf |> M.Seq.terms)

  let map_lit ~f_m ~f_mf lit = match lit with
    | Left (op, mf, m) ->
      Left (op, f_mf mf, f_m m)
    | Right (op, m, mf) ->
      Right (op, f_m m, f_mf mf)

  let product lit z =
    map_lit
      ~f_mf:(fun mf -> MF.product mf z)
      ~f_m:(fun m -> M.product m z)
      lit

  let apply_subst renaming subst (lit,sc) =
    map_lit
      ~f_mf:(fun mf -> MF.apply_subst renaming subst (mf,sc))
      ~f_m:(fun m -> M.apply_subst renaming subst (m,sc))
      lit

  let unify ?(subst=Unif_subst.empty) (lit1,sc1) (lit2,sc2) k =
    let _set_mf lit mf = match lit with
      | Left (op, _, m) -> Left (op, mf, m)
      | Right (op, m, _) -> Right (op, m, mf)
    in
    MF.unify_ff ~subst (focused_monome lit1,sc1) (focused_monome lit2,sc2)
      (fun (mf1, mf2, subst) ->
         k (_set_mf lit1 mf1, _set_mf lit2 mf2, subst))

  (* scale focused literals to have the same coefficient *)
  let scale l1 l2 =
    let z1 = MF.coeff (focused_monome l1)
    and z2 = MF.coeff (focused_monome l2) in
    let max = Q.max z1 z2 in
    product l1 (Q.div z2 max), product l2 (Q.div z1 max)

  let op = function
    | Left (op, _, _)
    | Right (op, _, _) -> op

  let unfocus = function
    | Left (op, m1_f, m2) -> make op (MF.to_monome m1_f) m2
    | Right (op, m1, m2_f) -> make op m1 (MF.to_monome m2_f)

  let pp out lit =
    let op2str = function
      | Equal -> "="
      | Less -> "<"
    in
    begin match lit with
      | Left (op, mf, m) ->
        Format.fprintf out "@[%a %s@ %a@]" MF.pp mf (op2str op) M.pp m
      | Right (op, m, mf) ->
        Format.fprintf out "@[%a %s@ %a@]" M.pp m (op2str op) MF.pp mf
    end

  let to_string = CCFormat.to_string pp
end