1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
open Nx_core
open Nx_rune
module T = Tensor
module PhysicalTbl = struct
type ('a, 'b) t = (Obj.t * 'b) list ref
let create _ = ref []
let find_opt tbl key =
let key_repr = Obj.repr key in
List.find_opt (fun (k, _) -> k == key_repr) !tbl |> Option.map snd
let add tbl key value =
let key_repr = Obj.repr key in
tbl := (key_repr, value) :: !tbl
let find tbl key =
match find_opt tbl key with Some v -> v | None -> raise Not_found
end
let next_twg_id_counter = ref 0
let fresh_twg_id () =
incr next_twg_id_counter;
!next_twg_id_counter
type ('a, 'b) t_with_grad = {
v : ('a, 'b) t;
mutable bv : ('a, 'b) t;
id : int;
}
type any_t_with_grad =
| Any_t_with_grad : ('a, 'b) t_with_grad -> any_t_with_grad
let value_of twg = twg.v
let grad_of twg = twg.bv
let unwrap_twg (type a b) (_dtype : (a, b) Dtype.t) (any : any_t_with_grad) :
(a, b) t_with_grad =
match any with Any_t_with_grad m -> Obj.magic m
let ln2 = 0.693147180559945309417
let deriv_neg x = T.neg (T.ones_like x)
let deriv_log2 (type a b) (x : (a, b) T.t) : (a, b) T.t =
match T.dtype x with
| Float16 ->
let ln2_tensor = T.full (context x) (T.dtype x) (T.shape x) ln2 in
T.div (T.ones_like x) (T.mul x ln2_tensor)
| Float32 ->
let ln2_tensor = T.full (context x) (T.dtype x) (T.shape x) ln2 in
T.div (T.ones_like x) (T.mul x ln2_tensor)
| Float64 ->
let ln2_tensor = T.full (context x) (T.dtype x) (T.shape x) ln2 in
T.div (T.ones_like x) (T.mul x ln2_tensor)
| _ -> failwith "deriv_log2: unsupported dtype"
let deriv_exp2 (type a b) (exp2_x : (a, b) T.t) (_x : (a, b) T.t) : (a, b) T.t =
match T.dtype exp2_x with
| Float16 ->
let ln2_tensor =
T.full (context exp2_x) (T.dtype exp2_x) (T.shape exp2_x) ln2
in
T.mul exp2_x ln2_tensor
| Float32 ->
let ln2_tensor =
T.full (context exp2_x) (T.dtype exp2_x) (T.shape exp2_x) ln2
in
T.mul exp2_x ln2_tensor
| Float64 ->
let ln2_tensor =
T.full (context exp2_x) (T.dtype exp2_x) (T.shape exp2_x) ln2
in
T.mul exp2_x ln2_tensor
| _ -> failwith "deriv_exp2: unsupported dtype"
let deriv_sin (type a b) (x : (a, b) T.t) : (a, b) T.t =
match T.dtype x with
| Float16 ->
let cos_x = T.cos x in
T.cast (T.dtype x) cos_x
| Float32 ->
let cos_x = T.cos x in
T.cast (T.dtype x) cos_x
| Float64 ->
let cos_x = T.cos x in
T.cast (T.dtype x) cos_x
| _ -> failwith "deriv_sin: unsupported dtype"
let deriv_sqrt sqrt_x _x =
let one = T.ones_like sqrt_x in
let two = T.add one one in
T.div one (T.mul two sqrt_x)
let deriv_recip x =
let x_squared = T.mul x x in
T.neg (T.recip x_squared)
let deriv_fdiv_wrt_op1 _op1 op2 = T.recip op2
let deriv_fdiv_wrt_op2 op1 op2 =
let op2_sq = T.mul op2 op2 in
T.div (T.neg op1) op2_sq
let deriv_pow_wrt_op1 op1 op2 =
let exp_minus_1 = T.sub op2 (T.ones_like op2) in
let op1_pow_exp_minus_1 = T.pow op1 exp_minus_1 in
T.mul op2 op1_pow_exp_minus_1
let log_e_float x =
let ctx = context x in
let log2_x = T.log2 x in
let log_2 = T.full ctx (dtype x) (T.shape x) ln2 in
T.mul log2_x log_2
let deriv_pow_wrt_op2_float result_val op1 =
let log_op1 = log_e_float op1 in
T.mul result_val log_op1
let deriv_max_wrt_op1 op1 op2 op1_dtype = T.cast op1_dtype (T.greater op1 op2)
let deriv_max_wrt_op2 op1 op2 op2_dtype =
T.cast op2_dtype (T.greater_equal op2 op1)
let prepare_grad_for_broadcast grad_output input_tensor_val axes op_keepdims
reduction_op_for_shape =
if op_keepdims then grad_output
else
let dummy_input_like = T.zeros_like input_tensor_val in
let reduced_shape_with_kept_dims =
T.shape (reduction_op_for_shape dummy_input_like ~axes ~keepdims:true)
in
T.reshape reduced_shape_with_kept_dims grad_output
let handle_identity_gradient_op ~op_name ~op get_or_init_twg t_in_val k_continue
=
let result_val = op t_in_val in
let forward_val = Effect.Deep.continue k_continue result_val in
Debug.with_context ("∇" ^ op_name) (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
twg_in.bv <- T.add twg_in.bv d_loss_d_result);
forward_val
let handle_unary_op ~op_name ~op ~deriv get_or_init_twg t_in_val k_continue =
let result_val = op t_in_val in
let forward_val = Effect.Deep.continue k_continue result_val in
Debug.with_context ("∇" ^ op_name) (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let grad_contrib = T.mul d_loss_d_result (deriv (value_of twg_in)) in
twg_in.bv <- T.add twg_in.bv grad_contrib);
forward_val
let handle_binary_op ~op_name ~op ~deriv_wrt_op1 ~deriv_wrt_op2 get_or_init_twg
op1_val op2_val k_continue =
let result_val = op op1_val op2_val in
let forward_val = Effect.Deep.continue k_continue result_val in
Debug.with_context ("∇" ^ op_name) (fun () ->
let twg_op1 = get_or_init_twg op1_val in
let twg_op2 = get_or_init_twg op2_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let grad_op1 =
T.mul d_loss_d_result
(deriv_wrt_op1 (value_of twg_op1) (value_of twg_op2))
in
twg_op1.bv <- T.add twg_op1.bv grad_op1;
let grad_op2 =
T.mul d_loss_d_result
(deriv_wrt_op2 (value_of twg_op1) (value_of twg_op2))
in
twg_op2.bv <- T.add twg_op2.bv grad_op2);
forward_val
let make_reverse_handler tape_by_twg_id val_to_twg_id_map =
let open Effect.Deep in
let get_or_init_twg tensor_val =
match PhysicalTbl.find_opt val_to_twg_id_map tensor_val with
| Some twg_id -> (
match Hashtbl.find_opt tape_by_twg_id twg_id with
| Some any_twg -> unwrap_twg (dtype tensor_val) any_twg
| None -> failwith "Rune.Autodiff inconsistency")
| None ->
let zero_grad = T.zeros_like tensor_val in
let new_id = fresh_twg_id () in
let new_twg = { v = tensor_val; bv = zero_grad; id = new_id } in
Hashtbl.add tape_by_twg_id new_id (Any_t_with_grad new_twg);
PhysicalTbl.add val_to_twg_id_map tensor_val new_id;
new_twg
in
let effc : type a. a Effect.t -> ((a, _) continuation -> _) option = function
| E_buffer { context = effect_ctx; dtype = dt; size_in_elements } ->
Some
(fun k ->
let result_val = op_buffer effect_ctx dt size_in_elements in
let forward_val = continue k result_val in
Debug.with_context "∇buffer" (fun () ->
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_const_scalar { context = effect_ctx; value; dtype = dt } ->
Some
(fun k ->
let result_val = op_const_scalar effect_ctx value dt in
let forward_val = continue k result_val in
Debug.with_context "∇const_scalar" (fun () ->
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_add { a = op1_val; b = op2_val } ->
Some
(fun k ->
let result_val = op_add op1_val op2_val in
let forward_val = continue k result_val in
Debug.with_context "∇add" (fun () ->
let twg_op1 = get_or_init_twg op1_val in
let twg_op2 = get_or_init_twg op2_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
twg_op1.bv <- T.add twg_op1.bv d_loss_d_result;
twg_op2.bv <- T.add twg_op2.bv d_loss_d_result);
forward_val)
| E_mul { a = op1_val; b = op2_val } ->
Some
(handle_binary_op ~op_name:"mul" ~op:op_mul
~deriv_wrt_op1:(fun _ op2 -> op2)
~deriv_wrt_op2:(fun op1 _ -> op1)
get_or_init_twg op1_val op2_val)
| E_neg { t_in } ->
Some
(handle_unary_op ~op_name:"neg" ~op:op_neg ~deriv:deriv_neg
get_or_init_twg t_in)
| E_log2 { t_in } ->
Some
(handle_unary_op ~op_name:"log2" ~op:op_log2 ~deriv:deriv_log2
get_or_init_twg t_in)
| E_exp2 { t_in = t_in_val } ->
Some
(fun k ->
let result_val = op_exp2 t_in_val in
let forward_val = continue k result_val in
Debug.with_context "∇exp2" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let d_result_d_input =
deriv_exp2 result_val (value_of twg_in)
in
let grad_contrib = T.mul d_loss_d_result d_result_d_input in
twg_in.bv <- T.add twg_in.bv grad_contrib);
forward_val)
| E_sin { t_in } ->
Some
(handle_unary_op ~op_name:"sin" ~op:op_sin ~deriv:deriv_sin
get_or_init_twg t_in)
| E_sqrt { t_in = t_in_val } ->
Some
(fun k ->
let result_val = T.sqrt t_in_val in
let forward_val = continue k result_val in
Debug.with_context "∇sqrt" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let d_result_d_input =
deriv_sqrt result_val (value_of twg_in)
in
let grad_contrib = T.mul d_loss_d_result d_result_d_input in
twg_in.bv <- T.add twg_in.bv grad_contrib);
forward_val)
| E_recip { t_in } ->
Some
(handle_unary_op ~op_name:"recip" ~op:op_recip ~deriv:deriv_recip
get_or_init_twg t_in)
| E_fdiv { a; b } ->
Some
(handle_binary_op ~op_name:"fdiv" ~op:op_fdiv
~deriv_wrt_op1:deriv_fdiv_wrt_op1 ~deriv_wrt_op2:deriv_fdiv_wrt_op2
get_or_init_twg a b)
| E_pow { a = op1_val; b = op2_val } ->
Some
(fun k ->
let result_val = op_pow op1_val op2_val in
let forward_val = continue k result_val in
Debug.with_context "∇pow" (fun () ->
let twg_op1 = get_or_init_twg op1_val in
let twg_op2 = get_or_init_twg op2_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let d_result_d_op1 =
deriv_pow_wrt_op1 (value_of twg_op1) (value_of twg_op2)
in
let grad_contrib_to_op1 =
T.mul d_loss_d_result d_result_d_op1
in
twg_op1.bv <- T.add twg_op1.bv grad_contrib_to_op1;
match dtype (value_of twg_op1) with
| Dtype.Float32 | Dtype.Float64 ->
let op1_float = T.cast Dtype.float32 (value_of twg_op1) in
let result_float = T.cast Dtype.float32 result_val in
let d_result_d_op2 =
deriv_pow_wrt_op2_float result_float op1_float
in
let d_result_d_op2_orig_dtype =
T.cast (dtype (value_of twg_op2)) d_result_d_op2
in
let grad_contrib_to_op2 =
T.mul d_loss_d_result d_result_d_op2_orig_dtype
in
twg_op2.bv <- T.add twg_op2.bv grad_contrib_to_op2
| _ -> ());
forward_val)
| E_max { a = op1_val; b = op2_val } ->
Some
(fun k ->
let result_val = op_max op1_val op2_val in
let forward_val = continue k result_val in
Debug.with_context "∇max" (fun () ->
let twg_op1 = get_or_init_twg op1_val in
let twg_op2 = get_or_init_twg op2_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let val_op1 = value_of twg_op1 in
let val_op2 = value_of twg_op2 in
let d_result_d_op1 =
deriv_max_wrt_op1 val_op1 val_op2 (dtype val_op1)
in
let grad_contrib_to_op1 =
T.mul d_loss_d_result d_result_d_op1
in
twg_op1.bv <- T.add twg_op1.bv grad_contrib_to_op1;
let d_result_d_op2 =
deriv_max_wrt_op2 val_op1 val_op2 (dtype val_op2)
in
let grad_contrib_to_op2 =
T.mul d_loss_d_result d_result_d_op2
in
twg_op2.bv <- T.add twg_op2.bv grad_contrib_to_op2);
forward_val)
| E_reshape { t_in = t_in_val; new_shape } ->
Some
(fun k ->
let result_val = op_reshape t_in_val new_shape in
let forward_val = continue k result_val in
Debug.with_context "∇reshape" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let original_shape_in = T.shape (value_of twg_in) in
let grad_contrib_in =
T.reshape original_shape_in d_loss_d_result
in
twg_in.bv <- T.add twg_in.bv grad_contrib_in);
forward_val)
| E_expand { t_in = t_in_val; new_target_shape } ->
Some
(fun k ->
let result_val = op_expand t_in_val new_target_shape in
let forward_val = continue k result_val in
Debug.with_context "∇expand" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_expanded_result = grad_of twg_res in
let grad_contrib_to_original_input =
let original_input_shape = T.shape (value_of twg_in) in
let expanded_output_shape = new_target_shape in
if original_input_shape = expanded_output_shape then
d_loss_d_expanded_result
else
let rank_orig_in = Array.length original_input_shape in
let rank_expanded_out =
Array.length expanded_output_shape
in
let axes_to_sum_list = ref [] in
if rank_expanded_out > rank_orig_in then
for i = 0 to rank_expanded_out - rank_orig_in - 1 do
axes_to_sum_list := i :: !axes_to_sum_list
done;
for i = 0 to rank_orig_in - 1 do
let orig_in_dim_size = original_input_shape.(i) in
let expanded_out_dim_idx =
i + (rank_expanded_out - rank_orig_in)
in
let expanded_out_dim_size =
expanded_output_shape.(expanded_out_dim_idx)
in
if orig_in_dim_size = 1 && expanded_out_dim_size > 1 then
axes_to_sum_list :=
expanded_out_dim_idx :: !axes_to_sum_list
done;
let summed_grad =
if !axes_to_sum_list <> [] then
T.sum d_loss_d_expanded_result
~axes:(Array.of_list (List.rev !axes_to_sum_list))
~keepdims:true
else d_loss_d_expanded_result
in
if T.shape summed_grad <> original_input_shape then
T.reshape original_input_shape summed_grad
else summed_grad
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_original_input);
forward_val)
| E_reduce_sum { t_in = t_in_val; axes; keepdims } ->
Some
(fun k ->
let result_val = op_reduce_sum ~axes ~keepdims t_in_val in
let forward_val = continue k result_val in
Debug.with_context "∇reduce_sum" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let original_input_shape = T.shape (value_of twg_in) in
let grad_prepared_for_broadcast =
prepare_grad_for_broadcast d_loss_d_result (value_of twg_in)
axes keepdims (fun t ~axes ~keepdims ->
T.sum t ~axes ~keepdims)
in
let grad_contrib_to_input =
T.broadcast_to original_input_shape
grad_prepared_for_broadcast
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_reduce_max { t_in = t_in_val; axes; keepdims } ->
Some
(fun k ->
let result_val = op_reduce_max ~axes ~keepdims t_in_val in
let forward_val = continue k result_val in
Debug.with_context "∇reduce_max" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let val_in = value_of twg_in in
let original_input_shape = T.shape val_in in
let grad_prepared_for_broadcast =
prepare_grad_for_broadcast d_loss_d_result val_in axes
keepdims (fun t ~axes ~keepdims -> T.max t ~axes ~keepdims)
in
let d_loss_d_result_broadcasted =
T.broadcast_to original_input_shape
grad_prepared_for_broadcast
in
let result_val_prepared_for_broadcast =
prepare_grad_for_broadcast result_val val_in axes keepdims
(fun t ~axes ~keepdims -> T.max t ~axes ~keepdims)
in
let result_val_broadcasted_for_compare =
T.broadcast_to original_input_shape
result_val_prepared_for_broadcast
in
let mask = T.equal val_in result_val_broadcasted_for_compare in
let d_result_d_input_mask_casted =
T.cast (dtype d_loss_d_result) mask
in
let grad_contrib_to_input =
T.mul d_loss_d_result_broadcasted d_result_d_input_mask_casted
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_reduce_prod { t_in = t_in_val; axes; keepdims } ->
Some
(fun k ->
let result_val = op_reduce_prod ~axes ~keepdims t_in_val in
let forward_val = continue k result_val in
Debug.with_context "reduce_prod" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let val_in = value_of twg_in in
let original_input_shape = T.shape val_in in
let grad_prepared_for_broadcast =
prepare_grad_for_broadcast d_loss_d_result val_in axes
keepdims (fun t ~axes ~keepdims -> T.prod t ~axes ~keepdims)
in
let d_loss_d_result_broadcasted =
T.broadcast_to original_input_shape
grad_prepared_for_broadcast
in
let result_val_prepared_for_broadcast =
prepare_grad_for_broadcast result_val val_in axes keepdims
(fun t ~axes ~keepdims -> T.prod t ~axes ~keepdims)
in
let result_val_broadcasted =
T.broadcast_to original_input_shape
result_val_prepared_for_broadcast
in
let epsilon = T.zeros_like val_in in
let t_in_val_safe = T.add val_in epsilon in
let d_result_d_input_term =
T.div result_val_broadcasted t_in_val_safe
in
let grad_contrib_to_input =
T.mul d_loss_d_result_broadcasted d_result_d_input_term
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_permute { t_in = t_in_val; axes = permute_axes } ->
Some
(fun k ->
let result_val = op_permute t_in_val permute_axes in
let forward_val = continue k result_val in
Debug.with_context "∇permute" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let rank = Array.length permute_axes in
let un_permute_axes = Array.make rank 0 in
Array.iteri
(fun i original_pos -> un_permute_axes.(original_pos) <- i)
permute_axes;
let grad_contrib_to_input =
T.transpose d_loss_d_result ~axes:un_permute_axes
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_pad { t_in = t_in_val; padding_config; fill_value } ->
Some
(fun k ->
let result_val = op_pad t_in_val padding_config fill_value in
let forward_val = continue k result_val in
Debug.with_context "∇pad" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let original_input_shape = T.shape (value_of twg_in) in
let shrink_limits =
Array.mapi
(fun dim_idx (pad_before, _) ->
(pad_before, pad_before + original_input_shape.(dim_idx)))
padding_config
in
let grad_contrib_to_input =
T.shrink shrink_limits d_loss_d_result
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_shrink { t_in = t_in_val; limits = shrink_limits } ->
Some
(fun k ->
let result_val = op_shrink t_in_val shrink_limits in
let forward_val = continue k result_val in
Debug.with_context "∇shrink" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let original_input_shape = T.shape (value_of twg_in) in
let padding_config =
Array.mapi
(fun dim_idx (start, stop_exclusive) ->
let original_dim_size = original_input_shape.(dim_idx) in
(start, original_dim_size - stop_exclusive))
shrink_limits
in
let zero_val = Dtype.zero (dtype d_loss_d_result) in
let grad_contrib_to_input =
T.pad padding_config zero_val d_loss_d_result
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_flip { t_in = t_in_val; dims_to_flip } ->
Some
(fun k ->
let axes_to_flip =
dims_to_flip |> Array.to_list
|> List.mapi (fun i flip -> if flip then Some i else None)
|> List.filter_map Fun.id |> Array.of_list
in
let result_val = op_flip t_in_val dims_to_flip in
let forward_val = continue k result_val in
Debug.with_context "∇flip" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let grad_contrib_to_input =
T.flip d_loss_d_result ~axes:axes_to_flip
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_cat { t_list; axis } ->
Some
(fun k ->
let result_val = op_cat t_list axis in
let forward_val = continue k result_val in
Debug.with_context "∇cat" (fun () ->
let twg_inputs = List.map get_or_init_twg t_list in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let d_loss_result_shape = T.shape d_loss_d_result in
let current_offset = ref 0 in
List.iter
(fun twg_in_current ->
let input_val = value_of twg_in_current in
let input_shape = T.shape input_val in
let size_along_axis = input_shape.(axis) in
let shrink_limits =
Array.mapi
(fun i dim_size ->
if i = axis then
(!current_offset, !current_offset + size_along_axis)
else (0, dim_size))
d_loss_result_shape
in
let grad_slice_for_input =
T.shrink shrink_limits d_loss_d_result
in
twg_in_current.bv <-
T.add twg_in_current.bv grad_slice_for_input;
current_offset := !current_offset + size_along_axis)
twg_inputs);
forward_val)
| E_cast { t_in = t_in_val; target_dtype } ->
Some
(fun k ->
let result_val = op_cast t_in_val target_dtype in
let forward_val = continue k result_val in
Debug.with_context "∇cast" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let original_dtype = dtype (value_of twg_in) in
let grad_contrib_to_input =
T.cast original_dtype d_loss_d_result
in
twg_in.bv <- T.add twg_in.bv grad_contrib_to_input);
forward_val)
| E_contiguous { t_in = t_in_val } ->
Some
(handle_identity_gradient_op ~op_name:"contiguous" ~op:op_contiguous
get_or_init_twg t_in_val)
| E_copy { t_in = t_in_val } ->
Some
(handle_identity_gradient_op ~op_name:"copy" ~op:op_copy
get_or_init_twg t_in_val)
| E_where { condition = cond_val; if_true = true_val; if_false = false_val }
->
Some
(fun k ->
let result_val = op_where cond_val true_val false_val in
let forward_val = continue k result_val in
Debug.with_context "∇where" (fun () ->
let _twg_cond = get_or_init_twg cond_val in
let twg_true = get_or_init_twg true_val in
let twg_false = get_or_init_twg false_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let condition_mask_casted =
T.cast (dtype d_loss_d_result) cond_val
in
let grad_contrib_to_true =
T.mul d_loss_d_result condition_mask_casted
in
twg_true.bv <- T.add twg_true.bv grad_contrib_to_true;
let ones_for_mask_dtype = T.ones_like condition_mask_casted in
let not_condition_mask_casted =
T.sub ones_for_mask_dtype condition_mask_casted
in
let grad_contrib_to_false =
T.mul d_loss_d_result not_condition_mask_casted
in
twg_false.bv <- T.add twg_false.bv grad_contrib_to_false);
forward_val)
| E_gather { data = data_val; indices = indices_val; axis } ->
Some
(fun k ->
let result_val = op_gather data_val indices_val axis in
let forward_val = continue k result_val in
Debug.with_context "∇gather" (fun () ->
let twg_data = get_or_init_twg data_val in
let _twg_indices = get_or_init_twg indices_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let zeros_data = T.zeros_like (value_of twg_data) in
let scattered_grads =
op_scatter ~mode:`Add zeros_data indices_val d_loss_d_result
axis
in
twg_data.bv <- T.add twg_data.bv scattered_grads);
forward_val)
| E_scatter
{ data_template = dt_val; indices = idx_val; updates = upd_val; axis }
->
Some
(fun k ->
let result_val = op_scatter dt_val idx_val upd_val axis in
let forward_val = continue k result_val in
Debug.with_context "∇scatter" (fun () ->
let twg_dt = get_or_init_twg dt_val in
let twg_upd = get_or_init_twg upd_val in
let _twg_idx = get_or_init_twg idx_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let grad_contrib_to_updates =
op_gather d_loss_d_result idx_val axis
in
twg_upd.bv <- T.add twg_upd.bv grad_contrib_to_updates;
let mask_for_dt_grad =
op_scatter (T.ones_like dt_val) idx_val (T.zeros_like upd_val)
axis
in
let grad_contrib_to_dt =
T.mul d_loss_d_result mask_for_dt_grad
in
twg_dt.bv <- T.add twg_dt.bv grad_contrib_to_dt);
forward_val)
| E_assign { dst = dst_val; src = src_val } ->
Some
(fun k ->
let old_dst_val = T.copy dst_val in
op_assign dst_val src_val;
let forward_val = continue k () in
Debug.with_context "∇assign" (fun () ->
let twg_src = get_or_init_twg src_val in
let twg_dst = get_or_init_twg dst_val in
let _twg_old_dst = get_or_init_twg old_dst_val in
twg_src.bv <- T.add twg_src.bv (grad_of twg_dst));
forward_val)
| E_idiv { a; b } ->
Some
(fun k ->
let result_val = op_idiv a b in
let forward_val = continue k result_val in
Debug.with_context "∇idiv" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_mod { a; b } ->
Some
(fun k ->
let result_val = T.mod_ a b in
let forward_val = continue k result_val in
Debug.with_context "∇mod" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_cmplt { a; b } ->
Some
(fun k ->
let result_val = op_cmplt a b in
let forward_val = continue k result_val in
Debug.with_context "∇cmplt" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_cmpne { a; b } ->
Some
(fun k ->
let result_val = op_cmpne a b in
let forward_val = continue k result_val in
Debug.with_context "∇cmpne" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_xor { a; b } ->
Some
(fun k ->
let result_val = op_xor a b in
let forward_val = continue k result_val in
Debug.with_context "∇xor" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_or { a; b } ->
Some
(fun k ->
let result_val = op_or a b in
let forward_val = continue k result_val in
Debug.with_context "∇or" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_and { a; b } ->
Some
(fun k ->
let result_val = op_and a b in
let forward_val = continue k result_val in
Debug.with_context "∇and" (fun () ->
let _twg_a = get_or_init_twg a in
let _twg_b = get_or_init_twg b in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_const_array { context = effect_ctx; array } ->
Some
(fun k ->
let result_val = op_const_array effect_ctx array in
let forward_val = continue k result_val in
Debug.with_context "∇const_array" (fun () ->
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_threefry { key = key_val; ctr = ctr_val } ->
Some
(fun k ->
let result_val = op_threefry key_val ctr_val in
let forward_val = continue k result_val in
Debug.with_context "∇threefry" (fun () ->
let _twg_key = get_or_init_twg key_val in
let _twg_ctr = get_or_init_twg ctr_val in
let _twg_res = get_or_init_twg result_val in
());
forward_val)
| E_unfold { t_in = t_in_val; kernel_size; stride; dilation; padding } ->
Some
(fun k ->
let result_val =
op_unfold t_in_val ~kernel_size ~stride ~dilation ~padding
in
let forward_val = continue k result_val in
Debug.with_context "∇unfold" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let input_shape = T.shape (value_of twg_in) in
let num_spatial_dims = Array.length kernel_size in
let output_size =
Array.sub input_shape
(Array.length input_shape - num_spatial_dims)
num_spatial_dims
in
let grad_contrib_in =
Nx_rune.op_fold d_loss_d_result ~output_size ~kernel_size
~stride ~dilation ~padding
in
twg_in.bv <- T.add twg_in.bv grad_contrib_in);
forward_val)
| E_fold
{ t_in = t_in_val; output_size; kernel_size; stride; dilation; padding }
->
Some
(fun k ->
let result_val =
op_fold t_in_val ~output_size ~kernel_size ~stride ~dilation
~padding
in
let forward_val = continue k result_val in
Debug.with_context "∇fold" (fun () ->
let twg_in = get_or_init_twg t_in_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let grad_contrib_in =
Nx_rune.op_unfold d_loss_d_result ~kernel_size ~stride
~dilation ~padding
in
twg_in.bv <- T.add twg_in.bv grad_contrib_in);
forward_val)
| E_matmul { a = a_val; b = b_val } ->
Some
(fun k ->
let result_val = op_matmul a_val b_val in
let forward_val = continue k result_val in
Debug.with_context "∇matmul" (fun () ->
let twg_a = get_or_init_twg a_val in
let twg_b = get_or_init_twg b_val in
let twg_res = get_or_init_twg result_val in
let d_loss_d_result = grad_of twg_res in
let a_ndim = Array.length (T.shape a_val) in
let b_ndim = Array.length (T.shape b_val) in
let grad_contrib_to_a, grad_contrib_to_b =
if a_ndim = 2 && b_ndim = 3 then
let b_transposed = T.transpose ~axes:[| 0; 2; 1 |] b_val in
let grad_a_3d = T.matmul d_loss_d_result b_transposed in
let grad_a = T.sum grad_a_3d ~axes:[| 0 |] in
let a_expanded = T.expand_dims [| 0 |] a_val in
let a_transposed =
T.transpose ~axes:[| 0; 2; 1 |] a_expanded
in
let grad_b = T.matmul a_transposed d_loss_d_result in
(grad_a, grad_b)
else if a_ndim = 3 && b_ndim = 2 then
let grad_a = T.matmul d_loss_d_result (T.transpose b_val) in
let a_transposed = T.transpose ~axes:[| 0; 2; 1 |] a_val in
let grad_b_3d = T.matmul a_transposed d_loss_d_result in
let grad_b = T.sum grad_b_3d ~axes:[| 0 |] in
(grad_a, grad_b)
else
let grad_a = T.matmul d_loss_d_result (T.transpose b_val) in
let grad_b = T.matmul (T.transpose a_val) d_loss_d_result in
(grad_a, grad_b)
in
twg_a.bv <- T.add twg_a.bv grad_contrib_to_a;
twg_b.bv <- T.add twg_b.bv grad_contrib_to_b);
forward_val)
| _ -> None
in
{
retc =
(fun final_result_val ->
Debug.with_context "∇grad_init" (fun () ->
let twg_final_result = get_or_init_twg final_result_val in
twg_final_result.bv <- T.ones_like final_result_val);
final_result_val);
exnc = raise;
effc;
}
let grad (f : ('a, 'b) t -> ('c, 'd) t) (input_val : ('a, 'b) t) : ('a, 'b) t =
let tape_by_twg_id : (int, any_t_with_grad) Hashtbl.t = Hashtbl.create 16 in
let val_to_twg_id_map = PhysicalTbl.create 16 in
let initial_grad_for_input = T.zeros_like input_val in
let twg_input_id = fresh_twg_id () in
let twg_input =
{ v = input_val; bv = initial_grad_for_input; id = twg_input_id }
in
Hashtbl.add tape_by_twg_id twg_input_id (Any_t_with_grad twg_input);
PhysicalTbl.add val_to_twg_id_map input_val twg_input_id;
let ad_handler = make_reverse_handler tape_by_twg_id val_to_twg_id_map in
let result_value_from_f = Effect.Deep.match_with f input_val ad_handler in
(match PhysicalTbl.find_opt val_to_twg_id_map result_value_from_f with
| Some twg_id -> (
match Hashtbl.find_opt tape_by_twg_id twg_id with
| Some any_twg ->
let twg_res = unwrap_twg (dtype result_value_from_f) any_twg in
twg_res.bv <- T.ones_like result_value_from_f
| None -> ())
| None -> ());
let final_twg_input_id = PhysicalTbl.find val_to_twg_id_map input_val in
let final_twg_input_any = Hashtbl.find tape_by_twg_id final_twg_input_id in
let final_twg_input = unwrap_twg (dtype input_val) final_twg_input_any in
final_twg_input.bv
let value_and_grad (f : ('a, 'b) t -> ('c, 'd) t) (input_val : ('a, 'b) t) :
('c, 'd) t * ('a, 'b) t =
let tape_by_twg_id : (int, any_t_with_grad) Hashtbl.t = Hashtbl.create 16 in
let val_to_twg_id_map = PhysicalTbl.create 16 in
let initial_grad_for_input = T.zeros_like input_val in
let twg_input_id = fresh_twg_id () in
let twg_input =
{ v = input_val; bv = initial_grad_for_input; id = twg_input_id }
in
Hashtbl.add tape_by_twg_id twg_input_id (Any_t_with_grad twg_input);
PhysicalTbl.add val_to_twg_id_map input_val twg_input_id;
let ad_handler = make_reverse_handler tape_by_twg_id val_to_twg_id_map in
let result_value_from_f = Effect.Deep.match_with f input_val ad_handler in
(match PhysicalTbl.find_opt val_to_twg_id_map result_value_from_f with
| Some twg_id -> (
match Hashtbl.find_opt tape_by_twg_id twg_id with
| Some any_twg ->
let twg_res = unwrap_twg (dtype result_value_from_f) any_twg in
twg_res.bv <- T.ones_like result_value_from_f
| None -> ())
| None -> ());
let final_twg_input_id = PhysicalTbl.find val_to_twg_id_map input_val in
let final_twg_input_any = Hashtbl.find tape_by_twg_id final_twg_input_id in
let final_twg_input = unwrap_twg (dtype input_val) final_twg_input_any in
(result_value_from_f, final_twg_input.bv)
let grads (f : ('a, 'b) t list -> ('c, 'd) t) (input_vals : ('a, 'b) t list) :
('a, 'b) t list =
let tape_by_twg_id : (int, any_t_with_grad) Hashtbl.t = Hashtbl.create 16 in
let val_to_twg_id_map = PhysicalTbl.create 16 in
let input_twgs =
List.map
(fun input_val ->
let initial_grad = T.zeros_like input_val in
let twg_id = fresh_twg_id () in
let twg = { v = input_val; bv = initial_grad; id = twg_id } in
Hashtbl.add tape_by_twg_id twg_id (Any_t_with_grad twg);
PhysicalTbl.add val_to_twg_id_map input_val twg_id;
twg)
input_vals
in
let ad_handler = make_reverse_handler tape_by_twg_id val_to_twg_id_map in
let result_value_from_f = Effect.Deep.match_with f input_vals ad_handler in
(match PhysicalTbl.find_opt val_to_twg_id_map result_value_from_f with
| Some twg_id -> (
match Hashtbl.find_opt tape_by_twg_id twg_id with
| Some any_twg ->
let twg_res = unwrap_twg (dtype result_value_from_f) any_twg in
twg_res.bv <- T.ones_like result_value_from_f
| None -> ())
| None -> ());
List.map2
(fun input_val _ ->
let twg_id = PhysicalTbl.find val_to_twg_id_map input_val in
let any_twg = Hashtbl.find tape_by_twg_id twg_id in
let twg = unwrap_twg (dtype input_val) any_twg in
twg.bv)
input_vals input_twgs
let value_and_grads (f : ('a, 'b) t list -> ('c, 'd) t)
(input_vals : ('a, 'b) t list) : ('c, 'd) t * ('a, 'b) t list =
let tape_by_twg_id : (int, any_t_with_grad) Hashtbl.t = Hashtbl.create 16 in
let val_to_twg_id_map = PhysicalTbl.create 16 in
let input_twgs =
List.map
(fun input_val ->
let initial_grad = T.zeros_like input_val in
let twg_id = fresh_twg_id () in
let twg = { v = input_val; bv = initial_grad; id = twg_id } in
Hashtbl.add tape_by_twg_id twg_id (Any_t_with_grad twg);
PhysicalTbl.add val_to_twg_id_map input_val twg_id;
twg)
input_vals
in
let ad_handler = make_reverse_handler tape_by_twg_id val_to_twg_id_map in
let result_value_from_f = Effect.Deep.match_with f input_vals ad_handler in
(match PhysicalTbl.find_opt val_to_twg_id_map result_value_from_f with
| Some twg_id -> (
match Hashtbl.find_opt tape_by_twg_id twg_id with
| Some any_twg ->
let twg_res = unwrap_twg (dtype result_value_from_f) any_twg in
twg_res.bv <- T.ones_like result_value_from_f
| None -> ())
| None -> ());
let grads =
List.map2
(fun input_val _ ->
let twg_id = PhysicalTbl.find val_to_twg_id_map input_val in
let any_twg = Hashtbl.find tape_by_twg_id twg_id in
let twg = unwrap_twg (dtype input_val) any_twg in
twg.bv)
input_vals input_twgs
in
(result_value_from_f, grads)