1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
open! Stdlib
let stats = Debug.find "stats"
let times = Debug.find "times"
module Addr = struct
type t = int
module Set = Set.Make (Int)
module Map = Map.Make (Int)
module Hashtbl = Int.Hashtbl
let to_string = string_of_int
let zero = 0
let pred = pred
let succ = succ
end
module Var : sig
type t [@@ocaml.immediate]
val print : Format.formatter -> t -> unit
val equal : t -> t -> bool
val idx : t -> int
val of_idx : int -> t
val fresh : unit -> t
val fresh_n : string -> t
val fork : t -> t
val count : unit -> int
val compare : t -> t -> int
val set_name : t -> string -> unit
val get_name : t -> string option
val propagate_name : t -> t -> unit
val reset : unit -> unit
module Set : Set.S with type elt = t
module Map : Map.S with type key = t
module Hashtbl : Hashtbl.S with type key = t
module Tbl : sig
type key = t
type 'a t
type size = unit
val get : 'a t -> key -> 'a
val set : 'a t -> key -> 'a -> unit
val length : 'a t -> int
val make : size -> 'a -> 'a t
val iter : (key -> 'a -> unit) -> 'a t -> unit
end
module ISet : sig
type elt = t
type t
val empty : unit -> t
val iter : (elt -> unit) -> t -> unit
val mem : t -> elt -> bool
val add : t -> elt -> unit
val remove : t -> elt -> unit
val copy : t -> t
end
end = struct
module T = struct
type t = int
let compare : t -> t -> int = compare
let equal (a : t) (b : t) = a = b
let hash x = x
end
include T
module Name = struct
let names = Int.Hashtbl.create 100
let reset () = Int.Hashtbl.clear names
let reserved = String.Hashtbl.create 100
let () = StringSet.iter (fun s -> String.Hashtbl.add reserved s ()) Reserved.keyword
let is_reserved s = String.Hashtbl.mem reserved s
let merge n1 n2 =
match n1, n2 with
| "", n2 -> n2
| n1, "" -> n1
| n1, n2 ->
if generated_name n1
then n2
else if generated_name n2
then n1
else if String.length n1 > String.length n2
then n1
else n2
let set_raw v nm = Int.Hashtbl.replace names v nm
let propagate v v' =
try
let name = Int.Hashtbl.find names v in
match Int.Hashtbl.find names v' with
| exception Not_found -> set_raw v' name
| name' -> set_raw v' (merge name name')
with Not_found -> ()
let set v nm_orig =
let len = String.length nm_orig in
if len > 0
then (
let buf = Buffer.create (String.length nm_orig) in
let idx = ref 0 in
while !idx < len && not (Char.is_letter nm_orig.[!idx]) do
incr idx
done;
let pending = ref false in
if !idx >= len
then (
pending := true;
idx := 0);
for i = !idx to len - 1 do
if Char.is_letter nm_orig.[i] || Char.is_digit nm_orig.[i]
then (
if !pending then Buffer.add_char buf '_';
Buffer.add_char buf nm_orig.[i];
pending := false)
else pending := true
done;
let str = Buffer.contents buf in
let str =
match str, nm_orig with
| "", ">>=" -> "symbol_bind"
| "", ">>|" -> "symbol_map"
| "", "^" -> "symbol_concat"
| "", _ -> "symbol"
| str, _ -> if is_reserved str then str ^ "$" else str
in
let max_len = 30 in
let str =
if String.length str > max_len then String.sub str ~pos:0 ~len:max_len else str
in
set_raw v str)
let get v = try Some (Int.Hashtbl.find names v) with Not_found -> None
end
let last_var = ref 0
let reset () =
last_var := 0;
Name.reset ()
let print f x =
Format.fprintf
f
"v%d%s"
x
(match Name.get x with
| None -> ""
| Some nm -> "{" ^ nm ^ "}")
let set_name i nm = Name.set i nm
let fresh () =
incr last_var;
!last_var
let fresh_n nm =
incr last_var;
set_name !last_var nm;
!last_var
let count () = !last_var + 1
let idx v = v
let of_idx v = v
let get_name i = Name.get i
let propagate_name i j = Name.propagate i j
let fork o =
let n = fresh () in
propagate_name o n;
n
module Set = Set.Make (T)
module Map = Map.Make (T)
module Tbl = struct
type 'a t = 'a array
type key = T.t
type size = unit
let get t x = t.(x)
let set t x v = t.(x) <- v
let length t = Array.length t
let make () v = Array.make (count ()) v
let iter f t =
for i = 0 to Array.length t - 1 do
f i (Array.unsafe_get t i)
done
end
module Hashtbl = Hashtbl.Make (T)
module ISet = struct
type t = BitSet.t
type elt = T.t
let iter f t = BitSet.iter ~f t
let mem t x = BitSet.mem t x
let add t (x : int) = BitSet.set t x
let remove t x = BitSet.unset t x
let copy = BitSet.copy
let empty _v = BitSet.create' (count ())
end
end
type cont = Addr.t * Var.t list
type prim =
| Vectlength
| Array_get
| Extern of string
| Not
| IsInt
| Eq
| Neq
| Lt
| Le
| Ult
type array_or_not =
| Array
| NotArray
| Unknown
module Native_string = struct
type t =
| Byte of string
| Utf of Utf8_string.t
let of_string x = Utf (Utf8_string.of_string_exn x)
let of_bytestring x = if String.is_ascii x then of_string x else Byte x
let equal a b =
match a, b with
| Byte x, Byte y -> String.equal x y
| Utf (Utf8 x), Utf (Utf8 y) -> String.equal x y
| Utf _, Byte _ | Byte _, Utf _ -> false
end
type constant =
| String of string
| NativeString of Native_string.t
| Float of Int64.t
| Float_array of Int64.t array
| Int of Targetint.t
| Int32 of Int32.t
| Int64 of Int64.t
| NativeInt of Int32.t
| Tuple of int * constant array * array_or_not
module Constant = struct
type t = constant
let rec ocaml_equal a b =
match a, b with
| String a, String b -> Some (String.equal a b)
| NativeString a, NativeString b -> Some (Native_string.equal a b)
| Tuple (ta, a, _), Tuple (tb, b, _) ->
if ta <> tb || Array.length a <> Array.length b
then Some false
else
let same = ref (Some true) in
for i = 0 to Array.length a - 1 do
match !same, ocaml_equal a.(i) b.(i) with
| None, _ -> ()
| _, None -> same := None
| Some s, Some c -> same := Some (s && c)
done;
!same
| Int a, Int b -> Some (Targetint.equal a b)
| Int32 a, Int32 b -> Some (Int32.equal a b)
| Int64 a, Int64 b -> Some (Int64.equal a b)
| NativeInt a, NativeInt b -> Some (Int32.equal a b)
| Float_array a, Float_array b ->
Some
(Array.equal
(fun f g -> Float.ieee_equal (Int64.float_of_bits f) (Int64.float_of_bits g))
a
b)
| Float a, Float b ->
Some (Float.ieee_equal (Int64.float_of_bits a) (Int64.float_of_bits b))
| String _, NativeString _ | NativeString _, String _ -> None
| Int _, Float _ | Float _, Int _ -> None
| Tuple ((0 | 254), _, _), Float_array _ -> None
| Float_array _, Tuple ((0 | 254), _, _) -> None
| ( Tuple _
, ( String _
| NativeString _
| Int64 _
| Int _
| Int32 _
| NativeInt _
| Float _
| Float_array _ ) ) -> Some false
| ( Float_array _
, ( String _
| NativeString _
| Int64 _
| Int _
| Int32 _
| NativeInt _
| Float _
| Tuple _ ) ) -> Some false
| ( String _
, (Int64 _ | Int _ | Int32 _ | NativeInt _ | Float _ | Tuple _ | Float_array _) ) ->
Some false
| ( NativeString _
, (Int64 _ | Int _ | Int32 _ | NativeInt _ | Float _ | Tuple _ | Float_array _) ) ->
Some false
| ( Int64 _
, ( String _
| NativeString _
| Int _
| Int32 _
| NativeInt _
| Float _
| Tuple _
| Float_array _ ) ) -> Some false
| Float _, (String _ | NativeString _ | Float_array _ | Int64 _ | Tuple (_, _, _)) ->
Some false
| ( (Int _ | Int32 _ | NativeInt _)
, (String _ | NativeString _ | Float_array _ | Int64 _ | Tuple (_, _, _)) ) ->
Some false
| Int _, (Int32 _ | NativeInt _)
| Int32 _, (Int _ | NativeInt _)
| NativeInt _, (Int _ | Int32 _)
| (Int32 _ | NativeInt _), Float _
| Float _, (Int32 _ | NativeInt _) -> None
end
type loc =
| No
| Before of Addr.t
| After of Addr.t
type prim_arg =
| Pv of Var.t
| Pc of constant
type special = Alias_prim of string
type mutability =
| Immutable
| Maybe_mutable
type field_type =
| Non_float
| Float
type expr =
| Apply of
{ f : Var.t
; args : Var.t list
; exact : bool
}
| Block of int * Var.t array * array_or_not * mutability
| Field of Var.t * int * field_type
| Closure of Var.t list * cont * Parse_info.t option
| Constant of constant
| Prim of prim * prim_arg list
| Special of special
type instr =
| Let of Var.t * expr
| Assign of Var.t * Var.t
| Set_field of Var.t * int * field_type * Var.t
| Offset_ref of Var.t * int
| Array_set of Var.t * Var.t * Var.t
| Event of Parse_info.t
type last =
| Return of Var.t
| Raise of Var.t * [ `Normal | `Notrace | `Reraise ]
| Stop
| Branch of cont
| Cond of Var.t * cont * cont
| Switch of Var.t * cont array
| Pushtrap of cont * Var.t * cont
| Poptrap of cont
type block =
{ params : Var.t list
; body : instr list
; branch : last
}
type program =
{ start : Addr.t
; blocks : block Addr.Map.t
; free_pc : Addr.t
}
let noloc = No
let location_of_pc pc = Before pc
module Print = struct
let rec list pr f l =
match l with
| [] -> ()
| [ x ] -> pr f x
| x :: r -> Format.fprintf f "%a, %a" pr x (list pr) r
let var_list = list Var.print
let cont f (pc, args) = Format.fprintf f "%d (%a)" pc var_list args
let rec constant f x =
match x with
| String s -> Format.fprintf f "%S" s
| NativeString (Byte s) -> Format.fprintf f "%Sj" s
| NativeString (Utf (Utf8 s)) -> Format.fprintf f "%Sj" s
| Float fl -> Format.fprintf f "%.12g" (Int64.float_of_bits fl)
| Float_array a ->
Format.fprintf f "[|";
for i = 0 to Array.length a - 1 do
if i > 0 then Format.fprintf f ", ";
Format.fprintf f "%.12g" (Int64.float_of_bits a.(i))
done;
Format.fprintf f "|]"
| Int i -> Format.fprintf f "%s" (Targetint.to_string i)
| Int32 i -> Format.fprintf f "%ldl" i
| Int64 i -> Format.fprintf f "%LdL" i
| NativeInt i -> Format.fprintf f "%ldn" i
| Tuple (tag, a, _) -> (
Format.fprintf f "<%d>" tag;
match Array.length a with
| 0 -> ()
| 1 ->
Format.fprintf f "(";
constant f a.(0);
Format.fprintf f ")"
| n ->
Format.fprintf f "(";
constant f a.(0);
for i = 1 to n - 1 do
Format.fprintf f ", ";
constant f a.(i)
done;
Format.fprintf f ")")
let arg f a =
match a with
| Pv x -> Var.print f x
| Pc c -> constant f c
let binop s =
match s with
| "%int_add" -> "+"
| "%int_sub" -> "-"
| "%int_mul" -> "*"
| "%int_div" -> "/"
| "%int_mod" -> "%"
| "%int_and" -> "&"
| "%int_or" -> "|"
| "%int_xor" -> "^"
| "%int_lsl" -> "<<"
| "%int_lsr" -> ">>>"
| "%int_asr" -> ">>"
| _ -> raise Not_found
let unop s =
match s with
| "%int_neg" -> "-"
| _ -> raise Not_found
let prim f p l =
match p, l with
| Vectlength, [ x ] -> Format.fprintf f "%a.length" arg x
| Array_get, [ x; y ] -> Format.fprintf f "%a[%a]" arg x arg y
| Extern s, [ x; y ] -> (
try Format.fprintf f "%a %s %a" arg x (binop s) arg y
with Not_found -> Format.fprintf f "\"%s\"(%a)" s (list arg) l)
| Extern s, [ x ] -> (
try Format.fprintf f "%s %a" (unop s) arg x
with Not_found -> Format.fprintf f "\"%s\"(%a)" s (list arg) l)
| Extern s, _ -> Format.fprintf f "\"%s\"(%a)" s (list arg) l
| Not, [ x ] -> Format.fprintf f "!%a" arg x
| IsInt, [ x ] -> Format.fprintf f "is_int(%a)" arg x
| Eq, [ x; y ] -> Format.fprintf f "%a === %a" arg x arg y
| Neq, [ x; y ] -> Format.fprintf f "!(%a === %a)" arg x arg y
| Lt, [ x; y ] -> Format.fprintf f "%a < %a" arg x arg y
| Le, [ x; y ] -> Format.fprintf f "%a <= %a" arg x arg y
| Ult, [ x; y ] -> Format.fprintf f "%a <= %a" arg x arg y
| _ -> assert false
let special f s =
match s with
| Alias_prim s -> Format.fprintf f "alias %s" s
let expr f e =
match e with
| Apply { f = g; args; exact } ->
if exact
then Format.fprintf f "%a!(%a)" Var.print g var_list args
else Format.fprintf f "%a(%a)" Var.print g var_list args
| Block (t, a, _, mut) ->
Format.fprintf
f
"%s{tag=%d"
(match mut with
| Immutable -> "imm"
| Maybe_mutable -> "")
t;
for i = 0 to Array.length a - 1 do
Format.fprintf f "; %d = %a" i Var.print a.(i)
done;
Format.fprintf f "}"
| Field (x, i, Non_float) -> Format.fprintf f "%a[%d]" Var.print x i
| Field (x, i, Float) -> Format.fprintf f "FLOAT{%a[%d]}" Var.print x i
| Closure (l, c, _) -> Format.fprintf f "fun(%a){%a}" var_list l cont c
| Constant c -> Format.fprintf f "CONST{%a}" constant c
| Prim (p, l) -> prim f p l
| Special s -> special f s
let instr f i =
match i with
| Let (x, e) -> Format.fprintf f "%a = %a" Var.print x expr e
| Assign (x, y) -> Format.fprintf f "(assign) %a = %a" Var.print x Var.print y
| Set_field (x, i, Non_float, y) ->
Format.fprintf f "%a[%d] = %a" Var.print x i Var.print y
| Set_field (x, i, Float, y) ->
Format.fprintf f "FLOAT{%a[%d]} = %a" Var.print x i Var.print y
| Offset_ref (x, i) -> Format.fprintf f "%a[0] += %d" Var.print x i
| Array_set (x, y, z) ->
Format.fprintf f "%a[%a] = %a" Var.print x Var.print y Var.print z
| Event loc -> Format.fprintf f "event %s" (Parse_info.to_string loc)
let last f l =
match l with
| Return x -> Format.fprintf f "return %a" Var.print x
| Raise (x, `Normal) -> Format.fprintf f "raise %a" Var.print x
| Raise (x, `Reraise) -> Format.fprintf f "reraise %a" Var.print x
| Raise (x, `Notrace) -> Format.fprintf f "raise_notrace %a" Var.print x
| Stop -> Format.fprintf f "stop"
| Branch c -> Format.fprintf f "branch %a" cont c
| Cond (x, cont1, cont2) ->
Format.fprintf f "if %a then %a else %a" Var.print x cont cont1 cont cont2
| Switch (x, a1) ->
Format.fprintf f "switch %a {" Var.print x;
Array.iteri a1 ~f:(fun i c -> Format.fprintf f "int %d -> %a; " i cont c);
Format.fprintf f "}"
| Pushtrap (cont1, x, cont2) ->
Format.fprintf f "pushtrap %a handler %a => %a" cont cont1 Var.print x cont cont2
| Poptrap c -> Format.fprintf f "poptrap %a" cont c
type xinstr =
| Instr of instr
| Last of last
let block f annot pc block =
Format.fprintf f "==== %d (%a) ====@." pc var_list block.params;
List.iter block.body ~f:(fun i ->
Format.fprintf f " %s %a@." (annot pc (Instr i)) instr i);
Format.fprintf f " %s %a@." (annot pc (Last block.branch)) last block.branch;
Format.fprintf f "@."
let program f annot { start; blocks; _ } =
Format.fprintf f "Entry point: %d@.@." start;
Addr.Map.iter (block f annot) blocks
end
let fold_closures p f accu =
Addr.Map.fold
(fun _ block accu ->
List.fold_left block.body ~init:accu ~f:(fun accu i ->
match i with
| Let (x, Closure (params, cont, cloc)) -> f (Some x) params cont cloc accu
| _ -> accu))
p.blocks
(f None [] (p.start, []) None accu)
let prepend ({ start; blocks; free_pc } as p) body =
match body with
| [] -> p
| _ -> (
match Addr.Map.find start blocks with
| block ->
{ p with
blocks = Addr.Map.add start { block with body = body @ block.body } blocks
}
| exception Not_found ->
let new_start = free_pc in
let blocks =
Addr.Map.add new_start { params = []; body; branch = Stop } blocks
in
let free_pc = free_pc + 1 in
{ start = new_start; blocks; free_pc })
let empty_block = { params = []; body = []; branch = Stop }
let empty =
let start = 0 in
let blocks = Addr.Map.singleton start empty_block in
{ start; blocks; free_pc = start + 1 }
let is_empty p =
match Addr.Map.cardinal p.blocks with
| 0 -> true
| 1 -> (
let _, v = Addr.Map.choose p.blocks in
match v with
| { body; branch = Stop; params = _ } -> (
match body with
| ([] | [ Let (_, Prim (Extern "caml_get_global_data", _)) ]) when true -> true
| _ -> false)
| _ -> false)
| _ -> false
let poptraps blocks pc =
let rec loop blocks pc visited depth acc =
if Addr.Set.mem pc visited
then acc, visited
else
let visited = Addr.Set.add pc visited in
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> acc, visited
| Branch (pc', _) -> loop blocks pc' visited depth acc
| Poptrap (pc', _) ->
if depth = 0
then Addr.Set.add pc' acc, visited
else loop blocks pc' visited (depth - 1) acc
| Pushtrap ((pc', _), _, (pc_h, _)) ->
let acc, visited = loop blocks pc' visited (depth + 1) acc in
let acc, visited = loop blocks pc_h visited depth acc in
acc, visited
| Cond (_, (pc1, _), (pc2, _)) ->
let acc, visited = loop blocks pc1 visited depth acc in
let acc, visited = loop blocks pc2 visited depth acc in
acc, visited
| Switch (_, a) ->
let acc, visited =
Array.fold_right
~init:(acc, visited)
~f:(fun (pc, _) (acc, visited) -> loop blocks pc visited depth acc)
a
in
acc, visited
in
loop blocks pc Addr.Set.empty 0 Addr.Set.empty |> fst
let fold_children blocks pc f accu =
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> accu
| Branch (pc', _) | Poptrap (pc', _) -> f pc' accu
| Pushtrap ((pc', _), _, (pc_h, _)) ->
let accu = f pc' accu in
let accu = f pc_h accu in
accu
| Cond (_, (pc1, _), (pc2, _)) ->
let accu = f pc1 accu in
let accu = f pc2 accu in
accu
| Switch (_, a1) ->
let accu = Array.fold_right ~init:accu ~f:(fun (pc, _) accu -> f pc accu) a1 in
accu
let fold_children_skip_try_body blocks pc f accu =
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> accu
| Branch (pc', _) | Poptrap (pc', _) -> f pc' accu
| Pushtrap ((pc', _), _, (pc_h, _)) ->
let accu = Addr.Set.fold f (poptraps blocks pc') accu in
let accu = f pc_h accu in
accu
| Cond (_, (pc1, _), (pc2, _)) ->
let accu = f pc1 accu in
let accu = f pc2 accu in
accu
| Switch (_, a1) ->
let accu = Array.fold_right ~init:accu ~f:(fun (pc, _) accu -> f pc accu) a1 in
accu
type 'c fold_blocs = block Addr.Map.t -> Addr.t -> (Addr.t -> 'c -> 'c) -> 'c -> 'c
type fold_blocs_poly = { fold : 'a. 'a fold_blocs } [@@unboxed]
let rec traverse' { fold } f pc visited blocks acc =
if not (Addr.Set.mem pc visited)
then
let visited = Addr.Set.add pc visited in
let visited, acc =
fold
blocks
pc
(fun pc (visited, acc) ->
let visited, acc = traverse' { fold } f pc visited blocks acc in
visited, acc)
(visited, acc)
in
let acc = f pc acc in
visited, acc
else visited, acc
let traverse fold f pc blocks acc = snd (traverse' fold f pc Addr.Set.empty blocks acc)
let rec preorder_traverse' { fold } f pc visited blocks acc =
if not (Addr.Set.mem pc visited)
then
let visited = Addr.Set.add pc visited in
let acc = f pc acc in
fold
blocks
pc
(fun pc (visited, acc) ->
let visited, acc = preorder_traverse' { fold } f pc visited blocks acc in
visited, acc)
(visited, acc)
else visited, acc
let preorder_traverse fold f pc blocks acc =
snd (preorder_traverse' fold f pc Addr.Set.empty blocks acc)
let fold_closures_innermost_first { start; blocks; _ } f accu =
let rec visit blocks pc f accu =
traverse
{ fold = fold_children }
(fun pc accu ->
let block = Addr.Map.find pc blocks in
List.fold_left block.body ~init:accu ~f:(fun accu i ->
match i with
| Let (x, Closure (params, cont, cloc)) ->
let accu = visit blocks (fst cont) f accu in
f (Some x) params cont cloc accu
| _ -> accu))
pc
blocks
accu
in
let accu = visit blocks start f accu in
f None [] (start, []) None accu
let fold_closures_outermost_first { start; blocks; _ } f accu =
let rec visit blocks pc f accu =
traverse
{ fold = fold_children }
(fun pc accu ->
let block = Addr.Map.find pc blocks in
List.fold_left block.body ~init:accu ~f:(fun accu i ->
match i with
| Let (x, Closure (params, cont, cloc)) ->
let accu = f (Some x) params cont cloc accu in
visit blocks (fst cont) f accu
| _ -> accu))
pc
blocks
accu
in
let accu = f None [] (start, []) None accu in
visit blocks start f accu
let rec last_instr l =
match l with
| [] | [ Event _ ] -> None
| [ i ] | [ i; Event _ ] -> Some i
| _ :: rem -> last_instr rem
let return_values p =
fold_closures
p
(fun name_opt _ (pc, _) _ rets ->
match name_opt with
| None -> rets
| Some name ->
let s =
traverse
{ fold = fold_children }
(fun pc s ->
let block = Addr.Map.find pc p.blocks in
match block.branch with
| Return x -> Var.Set.add x s
| _ -> s)
pc
p.blocks
Var.Set.empty
in
Var.Map.add name s rets)
Var.Map.empty
let equal p1 p2 =
p1.start = p2.start
&& Addr.Map.equal
(fun { params; body; branch } b ->
List.equal ~eq:Var.equal params b.params
&& Poly.equal branch b.branch
&& List.equal ~eq:Poly.equal body b.body)
p1.blocks
p2.blocks
let print_to_file p =
let file = Filename.temp_file "jsoo" "prog" in
let oc = open_out_bin file in
let f = Format.formatter_of_out_channel oc in
Print.program f (fun _ _ -> "") p;
close_out oc;
file
let print_diff p1 p2 =
if equal p1 p2
then ()
else
let f1 = print_to_file p1 in
let f2 = print_to_file p2 in
ignore (Sys.command (Printf.sprintf "patdiff %s %s" f1 f2) : int)
let check_updates ~name p1 p2 ~updates =
match equal p1 p2, updates = 0 with
| true, true -> ()
| false, false ->
if false && updates < 5 then print_diff p1 p2
| true, false ->
let file = print_to_file p1 in
Printf.eprintf
"CHECK_UPDATES: %s: %d updates declared, but program unchanged %s\n"
name
updates
file;
assert false
| false, true ->
Printf.eprintf "CHECK_UPDATES: %s: no update declared, but program differs.\n" name;
print_diff p1 p2;
assert false
let cont_equal (pc, args) (pc', args') = pc = pc' && List.equal ~eq:Var.equal args args'
let cont_compare (pc, args) (pc', args') =
let c = compare pc pc' in
if c <> 0 then c else List.compare ~cmp:Var.compare args args'
let with_invariant = Debug.find "invariant"
let do_compact { blocks; start; free_pc = _ } =
let remap =
let max = fst (Addr.Map.max_binding blocks) in
let a = Array.make (max + 1) 0 in
let i = ref 0 in
Addr.Map.iter
(fun pc _ ->
a.(pc) <- !i;
incr i)
blocks;
a
in
let rewrite_cont remap (pc, args) = remap.(pc), args in
let rewrite remap block =
let body =
List.map block.body ~f:(function
| Let (x, Closure (params, cont, loc)) ->
Let (x, Closure (params, rewrite_cont remap cont, loc))
| i -> i)
in
let branch =
match block.branch with
| (Return _ | Raise _ | Stop) as b -> b
| Branch c -> Branch (rewrite_cont remap c)
| Poptrap c -> Poptrap (rewrite_cont remap c)
| Cond (x, c1, c2) -> Cond (x, rewrite_cont remap c1, rewrite_cont remap c2)
| Switch (x, a) -> Switch (x, Array.map a ~f:(rewrite_cont remap))
| Pushtrap (c1, x, c2) -> Pushtrap (rewrite_cont remap c1, x, rewrite_cont remap c2)
in
{ block with body; branch }
in
let blocks =
Addr.Map.fold
(fun pc b blocks -> Addr.Map.add remap.(pc) (rewrite remap b) blocks)
blocks
Addr.Map.empty
in
let free_pc = (Addr.Map.max_binding blocks |> fst) + 1 in
let start = remap.(start) in
{ blocks; start; free_pc }
let compact p =
let t = Timer.make () in
let card = Addr.Map.cardinal p.blocks in
let max = Addr.Map.max_binding p.blocks |> fst in
let ratio = float card /. float max *. 100. in
let do_it = Float.(ratio < 70.) in
let p = if do_it then do_compact p else p in
if times () then Format.eprintf " compact: %a@." Timer.print t;
if stats ()
then
Format.eprintf
"Stats - compact: %d/%d = %.2f%%%s@."
card
max
ratio
(if not do_it then " - ignored" else "");
p
let used_blocks p =
let visited = BitSet.create' p.free_pc in
let rec mark_used pc =
if not (BitSet.mem visited pc)
then (
BitSet.set visited pc;
let block = Addr.Map.find pc p.blocks in
List.iter
~f:(fun i ->
match i with
| Let (_, Closure (_, (pc', _), _)) -> mark_used pc'
| _ -> ())
block.body;
fold_children p.blocks pc (fun pc' () -> mark_used pc') ())
in
mark_used p.start;
visited
let check_defs = true
let invariant ({ blocks; start; _ } as p) =
if with_invariant ()
then (
assert (Addr.Map.mem start blocks);
let defs = Var.ISet.empty () in
let check_cont (cont, args) =
let b = Addr.Map.find cont blocks in
assert (List.compare_lengths args b.params = 0)
in
let define x =
if check_defs
then (
assert (not (Var.ISet.mem defs x));
Var.ISet.add defs x)
in
let check_expr = function
| Apply _ -> ()
| Block (_, _, _, _) -> ()
| Field (_, _, _) -> ()
| Closure (l, cont, _) ->
List.iter l ~f:define;
check_cont cont
| Constant _ -> ()
| Prim (_, _) -> ()
| Special _ -> ()
in
let check_instr i =
match i with
| Let (x, e) ->
define x;
check_expr e
| Assign _ -> ()
| Set_field (_, _i, _, _) -> ()
| Offset_ref (_x, _i) -> ()
| Array_set (_x, _y, _z) -> ()
| Event _ -> ()
in
let rec check_events l =
match l with
| Event _ :: Event _ :: _ -> assert false
| _ :: r -> check_events r
| [] -> ()
in
let check_last l =
match l with
| Return _ -> ()
| Raise _ -> ()
| Stop -> ()
| Branch cont -> check_cont cont
| Cond (_x, cont1, cont2) ->
assert (not (cont_equal cont1 cont2));
check_cont cont1;
check_cont cont2
| Switch (_x, a1) -> Array.iteri a1 ~f:(fun _ cont -> check_cont cont)
| Pushtrap (cont1, _x, cont2) ->
check_cont cont1;
check_cont cont2
| Poptrap cont -> check_cont cont
in
let visited = used_blocks p in
Addr.Map.iter
(fun pc block ->
assert (BitSet.mem visited pc);
List.iter block.params ~f:define;
List.iter block.body ~f:check_instr;
check_events block.body;
check_last block.branch)
blocks)