1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
module type S = sig
type graph
type vertex
type edge_label
val graph : ?loops:bool -> v:int -> e:int -> unit -> graph
val labeled :
(vertex -> vertex -> edge_label) ->
?loops:bool -> v:int -> e:int -> unit -> graph
val random_few_edges : loops:bool -> v:int -> e:int -> graph
val random_many_edges : loops:bool -> v:int -> e:int -> graph
val gnp : ?loops:bool -> v:int -> prob:float -> unit -> graph
val gnp_labeled :
(vertex -> vertex -> edge_label) ->
?loops:bool -> v:int -> prob:float -> unit -> graph
end
module Make(B : Builder.INT) = struct
open B
type graph = G.t
type vertex = G.V.t
type edge_label = G.E.label
open Int64
let max_edges ~loops ~v ~e =
if v <= 0 || e < 0 then invalid_arg "random";
let v64 = of_int v in
let max_e = mul v64 (pred v64) in
let max_e = if G.is_directed then max_e else div max_e (of_int 2) in
let max_e = if loops then add max_e v64 else max_e in
if of_int e > max_e then invalid_arg "random: too many edges";
max_e
let fold_for i0 i1 f =
let rec loop i v = if i > i1 then v else loop (i + 1) (f v i) in
loop i0
let random_few_edges add_edge ~loops ~v ~e =
let _ = max_edges ~loops ~v ~e in
let a = Array.init v G.V.create in
let g = Array.fold_left add_vertex (empty ()) a in
let rec random_edge g =
let i = Random.int v in
let j = Random.int v in
if (i = j && not loops) || G.mem_edge g a.(i) a.(j) then
random_edge g
else
add_edge g a.(i) a.(j)
in
fold_for 1 e (fun g _ -> random_edge g) g
let random_many_edges add_edge ~loops ~v ~e =
let v64 = of_int v in
let max_e = max_edges ~loops ~v ~e in
let a = Array.init v G.V.create in
let g = Array.fold_left add_vertex (empty ()) a in
let rec add_edges i j max nb g =
assert
(max >= 0L &&
max_e =
add max (add (mul (of_int i) v64)
(of_int
(j -
(match G.is_directed, loops with
| true, true -> 0
| true, false -> if j > i then i + 1 else i
| false, true -> i * (i - 1) / 2 + if j > i then i else j
| false, false -> i*(i+1)/2 + if j > i then i+1 else j)))));
if nb = 0 then
g
else
let add_edges =
let i, j = if j = v - 1 then i + 1, 0 else i, j + 1 in
add_edges i j
in
if (i = j && not loops) || (not G.is_directed && i > j) then
add_edges max nb g
else
let add_edges = add_edges (pred max) in
if Random.int64 max < of_int nb then
add_edges (nb - 1) (add_edge g a.(i) a.(j))
else
add_edges nb g
in
add_edges 0 0 max_e e g
let random ~loops ~v ~e =
let r = float e /. (float v *. float v) in
(if r < 0.4 then random_few_edges else random_many_edges) ~loops ~v ~e
let graph ?(loops=false) ~v ~e () = random B.add_edge ~loops ~v ~e
let labeled f ?(loops=false) ~v ~e () =
random
(fun g v1 v2 -> B.add_edge_e g (G.E.create v1 (f v1 v2) v2))
~loops ~v ~e
let random_few_edges = random_few_edges B.add_edge
let random_many_edges = random_many_edges B.add_edge
(** G(n,p) graphs
See https://en.wikipedia.org/wiki/Random_graph *)
let gnp_generic add_edge ?(loops=false) ~v ~prob () =
if not (0.0 <= prob && prob <= 1.0) then invalid_arg "gnp";
let vertices = Array.init v (fun i -> B.G.V.create i) in
let g = Array.fold_left B.add_vertex (B.empty ()) vertices in
let g = ref g in
for i = 0 to v-1 do
for j = 0 to (if G.is_directed then v-1 else i) do
if (loops || j <> i) && (prob = 1.0 || Random.float 1.0 < prob) then
g := add_edge !g vertices.(i) vertices.(j)
done
done;
!g
let gnp ?(loops=false) ~v ~prob () =
gnp_generic B.add_edge ~loops ~v ~prob ()
let gnp_labeled f ?(loops=false) ~v ~prob () =
gnp_generic (fun g v1 v2 -> B.add_edge_e g (G.E.create v1 (f v1 v2) v2))
~loops ~v ~prob ()
end
module P (G : Sig.P with type V.label = int) = Make(Builder.P(G))
module I (G : Sig.I with type V.label = int) = Make(Builder.I(G))
(** Random planar graphs *)
module Planar = struct
module type S = sig
type graph
val graph :
?loops:bool -> xrange:int*int -> yrange:int*int ->
prob:float -> int -> graph
end
module Make
(B : Builder.S with type G.V.label = int * int and type G.E.label = int) =
struct
type graph = B.G.t
open B.G
module Point = struct
type point = V.t
let ccw v1 v2 v3 =
Delaunay.IntPoints.ccw (V.label v1) (V.label v2) (V.label v3)
let in_circle v1 v2 v3 v4 =
Delaunay.IntPoints.in_circle
(V.label v1) (V.label v2) (V.label v3) (V.label v4)
let distance v1 v2 =
let x1,y1 = V.label v1 in
let x2,y2 = V.label v2 in
let sqr x = let x = float x in x *. x in
truncate (sqrt (sqr (x1 - x2) +. sqr (y1 - y2)))
end
module Triangulation = Delaunay.Make(Point)
let graph ?(loops=false) ~xrange:(xmin,xmax) ~yrange:(ymin,ymax) ~prob v =
if not (0.0 <= prob && prob <= 1.0) then invalid_arg "Planar.graph";
if v < 2 then invalid_arg "Planar.graph";
let random_point () =
xmin + Random.int (1 + xmax - xmin),
ymin + Random.int (1 + ymax - ymin)
in
let vertices = Array.init v (fun _ -> V.create (random_point ())) in
let t = Triangulation.triangulate vertices in
let g = Array.fold_left B.add_vertex (B.empty ()) vertices in
let g =
if loops then
Array.fold_left
(fun g v ->
if Random.float 1.0 < prob then
g
else
let e = E.create v 0 v in B.add_edge_e g e)
g vertices
else
g
in
let add_edge v1 v2 g =
if Random.float 1.0 < prob then
g
else
let e = E.create v1 (Point.distance v1 v2) v2 in B.add_edge_e g e
in
Triangulation.fold
(fun v1 v2 g ->
let g = add_edge v1 v2 g in
if is_directed then add_edge v2 v1 g else g)
t g
end
module P (G : Sig.P with type V.label = int * int and type E.label = int) =
Make(Builder.P(G))
module I (G : Sig.I with type V.label = int * int and type E.label = int) =
Make(Builder.I(G))
end