1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
open Farith
let ops_rm =
Value.ops
~compare:Mode.compare
~print:Mode.pp
()
let ops =
Value.ops
~compare:(fun b b' -> F.compare b b')
~print:(fun fmt b -> Format.fprintf fmt "%a" F.pp b)
()
module E = Dolmen.Std.Expr
module B = Dolmen.Std.Builtin
exception Unhandled_exponand_and_mantissa of { ew : int; mw : int; }
let mk f = Value.mk ~ops f
let fp v = (Value.extract_exn ~ops v)
let mode v = (Value.extract_exn ~ops:ops_rm v)
let check ~ew ~mw =
if not (Farith__GenericFloat.check_param (Z.of_int mw) (Z.of_int ew))
then raise (Unhandled_exponand_and_mantissa { ew; mw = mw + 1; })
let test ~cst p =
Some (Fun.mk_clos @@ Fun.fun_1 ~cst (fun x -> Bool.mk @@ p (fp x)))
let cmp ~cst p =
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun x y -> Bool.mk @@ p (fp x) (fp y)))
let op2_mode ~cst f =
Some (Fun.mk_clos @@ Fun.fun_3 ~cst (fun m x y -> mk @@ f (mode m) (fp x) (fp y)))
let op1_mode ~cst f =
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m x -> mk @@ f (mode m) (fp x)))
let op1 ~cst f =
Some (Fun.mk_clos @@ Fun.fun_1 ~cst(fun x -> mk @@ f (fp x)))
let f_of_q ~ew ~mw mode q =
check ~ew ~mw;
F.of_q ~ew ~mw mode q
let f_round ~mw ~ew mode f =
check ~ew ~mw;
F.round ~ew ~mw mode f
let f_of_bits ~mw ~ew bits =
check ~ew ~mw;
F.of_bits ~ew ~mw bits
let f_inf ~mw ~ew plus =
check ~ew ~mw;
F.inf ~mw ~ew plus
let f_zero ~mw ~ew plus =
check ~mw ~ew;
F.zero ~mw ~ew plus
let f_nan ~mw ~ew =
check ~ew ~mw;
F.nan ~ew ~mw
let round_q ~neg ~mw ~ew mode r =
check ~mw ~ew;
if Q.equal Q.zero r then F.zero ~mw ~ew neg else F.of_q ~mw ~ew mode r
let min_max ~eval env ~cmp ~cst =
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun x' y' ->
let x = fp x' in
let y = fp y' in
match F.classify x, F.classify y with
| NaN, _ -> mk y
| _, NaN -> mk x
| PZero, NZero | NZero, PZero ->
Fun.corner_case ~eval env cst [] [x'; y']
~post_check:(fun res ->
match F.classify (fp res) with
| PZero | NZero -> ()
| _ -> raise (Model.Incorrect_extension (cst, [x'; y'], res)))
| _ -> if cmp x y then mk x else mk y
))
let nearest_no_tie x =
assert (not (Z.equal x.Q.den (Z.of_int 2)));
Int.ceil (Q.sub x (Q.make Z.one (Z.of_int 2)))
let toIntegral mode q =
match mode with
| Mode.NE ->
if Z.equal (Z.of_int 2) q.Q.den then
let r = Int.floor q in
(if Z.is_even r then r else Z.succ r)
else
(nearest_no_tie q)
| Mode.NA ->
if Z.equal (Z.of_int 2) q.Q.den then
let r = if Z.sign q.Q.num < 0 then Int.floor q else Int.ceil q in
r
else
(nearest_no_tie q)
| Mode.ZR -> (Int.truncate q)
| Mode.DN -> (Int.floor q)
| Mode.UP -> (Int.ceil q)
let builtins ~eval env (cst : Dolmen.Std.Expr.Term.Const.t) =
match cst.builtin with
| B.RoundNearestTiesToEven -> Some (Value.mk ~ops:ops_rm Mode.NE)
| B.RoundNearestTiesToAway -> Some (Value.mk ~ops:ops_rm Mode.NA)
| B.RoundTowardPositive -> Some (Value.mk ~ops:ops_rm Mode.UP)
| B.RoundTowardNegative -> Some (Value.mk ~ops:ops_rm Mode.DN)
| B.RoundTowardZero -> Some (Value.mk ~ops:ops_rm Mode.ZR)
| B.Real_to_fp (ew, prec) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m r ->
check ~ew ~mw:(prec - 1);
mk (f_of_q ~ew ~mw:(prec - 1) (mode m) (Real.get r))))
| B.Fp_to_fp (_ew1, _prec1, ew2, prec2) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst
(fun m f1 -> mk @@ f_round ~ew:ew2 ~mw:(prec2 - 1) (mode m) (fp f1)))
| B.Sbv_to_fp (n, ew, prec) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m bv ->
mk @@ f_of_q ~ew ~mw:(prec - 1) (mode m) (Q.of_bigint (Bitv.sbitv n bv))))
| B.Ubv_to_fp (n, ew, prec) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m bv ->
mk @@ f_of_q ~ew ~mw:(prec - 1) (mode m) (Q.of_bigint (Bitv.ubitv n bv))))
| B.Fp (ew, prec) ->
Some (Fun.mk_clos @@ Fun.fun_3 ~cst (fun bvs bve bvm ->
mk @@
f_of_bits ~ew ~mw:(prec - 1)
(Z.logor
(Z.logor
(Z.shift_left
(Bitv.ubitv 1 bvs)
(ew + prec - 1))
(Z.shift_left
(Bitv.ubitv ew bve)
(prec - 1)))
(Bitv.ubitv (prec - 1) bvm))))
| B.Ieee_format_to_fp (ew, prec) ->
Some (Fun.mk_clos @@ Fun.fun_1 ~cst (fun bv ->
mk @@
f_of_bits ~ew ~mw:(prec - 1) (Bitv.ubitv (ew + prec) bv)))
| B.To_real (_ew, _prec) ->
Some (Fun.mk_clos @@ Fun.fun_1 ~cst (fun f -> Real.mk @@ (F.to_q (fp f))))
| B.Plus_infinity (ew, prec) ->
Some (mk @@ f_inf ~ew ~mw:(prec - 1) false)
| B.Minus_infinity (ew, prec) ->
Some (mk @@ f_inf ~ew ~mw:(prec - 1) true)
| B.NaN (ew, prec) ->
Some (mk @@ f_nan ~ew ~mw:(prec - 1))
| B.Plus_zero (ew, prec) ->
Some (mk @@ f_zero ~ew ~mw:(prec - 1) false)
| B.Minus_zero (ew, prec) ->
Some (mk @@ f_zero ~ew ~mw:(prec - 1) true)
| B.Fp_add (_ew, _prec) ->
op2_mode ~cst F.add
| B.Fp_sub (_ew, _prec) ->
op2_mode ~cst F.sub
| B.Fp_mul (_ew, _prec) ->
op2_mode ~cst F.mul
| B.Fp_abs (_ew, _prec) ->
op1 ~cst F.abs
| B.Fp_neg (_ew, _prec) ->
op1 ~cst F.neg
| B.Fp_sqrt (_ew, _prec) ->
op1_mode ~cst F.sqrt
| B.Fp_div (_ew, _prec) ->
op2_mode ~cst F.div
| B.Fp_fma (_ew, _prec) ->
Some (Fun.mk_clos @@ Fun.fun_4 ~cst (fun m x y z ->
mk @@ F.fma (mode m) (fp x) (fp y) (fp z)))
| B.Fp_eq (_ew, _prec) ->
cmp ~cst F.eq
| B.Fp_leq (_ew, _prec) ->
cmp ~cst F.le
| B.Fp_lt (_ew, _prec) ->
cmp ~cst F.lt
| B.Fp_geq (_ew, _prec) ->
cmp ~cst F.ge
| B.Fp_gt (_ew, _prec) ->
cmp ~cst F.gt
| B.Fp_isInfinite (_ew, _prec) ->
test ~cst F.is_infinite
| B.Fp_isZero (_ew, _prec) ->
test ~cst F.is_zero
| B.Fp_isNaN (_ew, _prec) ->
test ~cst F.is_nan
| B.Fp_isNegative (_ew, _prec) ->
test ~cst F.is_negative
| B.Fp_isPositive (_ew, _prec) ->
test ~cst F.is_positive
| B.Fp_isNormal (_ew, _prec) ->
test ~cst F.is_normal
| B.Fp_isSubnormal (_ew, _prec) ->
test ~cst F.is_subnormal
| B.Fp_rem (ew,prec) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun f g ->
let f = fp f in
let g = fp g in
let mode = Farith.Mode.NE in
let mw = prec - 1 in
match F.classify f, F.classify g with
| (NaN | PInf | NInf), _ -> mk (F.nan ~ew ~mw)
| _, (NaN | PZero | NZero) -> mk (F.nan ~ew ~mw)
| _, (PInf | NInf) -> mk f
| (PZero | NZero | PNormal | NNormal | PSubn | NSubn) ,
(PNormal | NNormal | PSubn | NSubn) ->
let qf = F.to_q f and qg = F.to_q g in
let y = toIntegral mode (Q.div qf qg) in
let x = Q.sub qf (Q.mul qg (Q.of_bigint y)) in
mk (round_q ~neg:(F.is_negative f) mode ~ew ~mw x)
))
| B.Fp_roundToIntegral (ew,prec) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m f ->
let f = fp f in
let mode = mode m in
let mw = prec - 1 in
match F.classify f with
| (NaN | PInf | NInf | PZero | NZero) -> mk f
| (PNormal | NNormal | PSubn | NSubn) ->
let q = F.to_q f in
let n = toIntegral mode q in
mk (round_q ~neg:(F.is_negative f) ~mw ~ew mode (Q.of_bigint n))
))
| B.Fp_min (_ew,_prec) -> min_max ~eval env ~cmp:F.lt ~cst
| B.Fp_max (_ew,_prec) -> min_max ~eval env ~cmp:F.gt ~cst
| B.To_ubv (_ew,_prec,size) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m f ->
let f' = fp f in
let mode = mode m in
match F.classify f' with
| (NaN | PInf | NInf) ->
Fun.corner_case ~eval env cst [] [m; f]
| (PNormal | NNormal | PSubn | NSubn | PZero | NZero) ->
let q = F.to_q f' in
let n = toIntegral mode q in
if Z.sign n >= 0 && Z.numbits n <= size then
Bitv.mk size n
else
Fun.corner_case ~eval env cst [] [m; f]
))
| B.To_sbv (_ew,_prec,size) ->
Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun m f ->
let f' = fp f in
let mode = mode m in
match F.classify f' with
| (NaN | PInf | NInf) ->
Fun.corner_case ~eval env cst [] [m; f]
| (PNormal | NNormal | PSubn | NSubn | PZero | NZero) ->
let q = F.to_q f' in
let n = toIntegral mode q in
let n' = Z.extract n 0 size in
if Z.equal n (Z.signed_extract n' 0 size) then
Bitv.mk size n'
else
Fun.corner_case ~eval env cst [] [m; f]
))
| _ -> None