Source file owl_base_stats.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# 1 "src/base/stats/owl_base_stats.ml"
(*
 * OWL - an OCaml numerical library for scientific computing
 * Copyright (c) 2016-2018 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)


(* PRNG of various distributions *)

let std_uniform_rvs = Owl_base_stats_dist_uniform.std_uniform_rvs


let uniform_int_rvs = Owl_base_stats_dist_uniform.uniform_int_rvs


let uniform_rvs = Owl_base_stats_dist_uniform.uniform_rvs


let bernoulli_rvs = Owl_base_stats_dist_bernoulli.bernoulli_rvs


let gaussian_rvs = Owl_base_stats_dist_gaussian.gaussian_rvs


let exponential_rvs = Owl_base_stats_dist_exponential.exponential_rvs


let cauchy_rvs = Owl_base_stats_dist_cauchy.cauchy_rvs


let std_gamma_rvs = Owl_base_stats_dist_gamma.std_gamma_rvs


let gamma_rvs = Owl_base_stats_dist_gamma.gamma_rvs


let gumbel1_rvs = Owl_base_stats_dist_gumbel1.gumbel1_rvs


let gumbel2_rvs = Owl_base_stats_dist_gumbel2.gumbel2_rvs


(* Randomisation function *)

let shuffle x =
  let y = Array.copy x in
  let n = Array.length x in

  for i = n - 1 downto 1 do
    let s = float_of_int (i + 1) in
    let j = int_of_float (std_uniform_rvs () *. s) in
    Owl_utils_array.swap y i j
  done;

  y


let choose x k =
  let n = Array.length x in
  assert (n >= k);
  let y = Array.make k x.(0) in
  let i = ref 0 in
  let j = ref 0 in

  while !i < n && !j < k do
    let s = float_of_int (n - !i) in
    let l = int_of_float (s *. std_uniform_rvs ()) in
    if l < (k - !j) then (
      y.(!j) <- x.(!i);
      j := !j + 1;
    );
    i := !i + 1;
  done;

  y


let sample x k =
  let y = Array.make k x.(0) in
  let n = Array.length x in

  for i = 0 to k - 1 do
    let j = uniform_int_rvs n in
    y.(i) <- x.(j)
  done;

  y


(* Basic statistical functions *)

let sum x = Array.fold_left ( +. ) 0. x


let mean x =
  let n = float_of_int (Array.length x) in
  sum x /. n


let _get_mean m x =
  match m with
  | Some a -> a
  | None   -> mean x


let var ?mean x =
  let m = _get_mean mean x in
  let t = ref 0. in

  Array.iter (fun a ->
    let d = a -. m in
    t := !t +. d *. d
  ) x;

  let l = float_of_int (Array.length x) in
  let n = if l = 1. then 1. else l -. 1. in
  !t /. n


let std ?mean x = sqrt (var ?mean x)


let sem ?mean x =
  let s = std ?mean x in
  let n = float_of_int (Array.length x) in
  s /. (sqrt n)


let absdev ?mean x =
  let m = _get_mean mean x in
  let t = ref 0. in

  Array.iter (fun a ->
    let d = abs_float (a -. m) in
    t := !t +. d
  ) x;

  let n = float_of_int (Array.length x) in
  !t /. n


let skew ?mean ?sd x =
  let m = _get_mean mean x in
  let s = match sd with
    | Some a -> a
    | None   -> std ~mean:m x
  in
  let t = ref 0. in

  Array.iter (fun a ->
    let s = (a -. m) /. s in
    t := !t +. s *. s *. s
  ) x;

  let n = float_of_int (Array.length x) in
  !t /. n


let kurtosis ?mean ?sd x =
  let m = _get_mean mean x in
  let s = match sd with
    | Some a -> a
    | None   -> std ~mean:m x
  in
  let t = ref 0. in

  Array.iter (fun a ->
    let s = (a -. m) /. s in
    let u = s *. s in
    t := !t +. u *. u
  ) x;

  let n = float_of_int (Array.length x) in
  !t /. n


let central_moment n x =
  let m = float_of_int n in
  let u = mean x in
  let x = Array.map (fun x -> (x -. u) ** m) x in
  let a = Array.fold_left (+.) 0. x in
  a /. (float_of_int (Array.length x))


let cov ?m0 ?m1 x0 x1 =
  let n0 = Array.length x0 in
  let n1 = Array.length x1 in
  assert (n0 = n1);
  let m0 = _get_mean m0 x0 in
  let m1 = _get_mean m1 x1 in
  let t = ref 0. in

  Array.iter2 (fun a0 a1 ->
    let d0 = a0 -. m0 in
    let d1 = a1 -. m1 in
    t := !t +. d0 *. d1
  ) x0 x1;

  let n = float_of_int (Array.length x0) in
  !t /. n


let concordant x0 x1 =
  let c = ref 0 in
  for i = 0 to (Array.length x0) - 2 do
    for j = i + 1 to (Array.length x0) - 1 do
      if (i <> j) && (
        ((x0.(i) < x0.(j)) && (x1.(i) < x1.(j))) ||
        ((x0.(i) > x0.(j)) && (x1.(i) > x1.(j))) ) then
        c := !c + 1
    done
  done;
  !c


let discordant x0 x1 =
  let c = ref 0 in
  for i = 0 to (Array.length x0) - 2 do
    for j = i + 1 to (Array.length x0) - 1 do
      if (i <> j) && (
        ((x0.(i) < x0.(j)) && (x1.(i) > x1.(j))) ||
        ((x0.(i) > x0.(j)) && (x1.(i) < x1.(j))) ) then
        c := !c + 1
    done
  done;
  !c


let kendall_tau x0 x1 =
  let a = float_of_int (concordant x0 x1) in
  let b = float_of_int (discordant x0 x1) in
  let n = float_of_int (Array.length x0) in
  2. *. (a -. b) /. (n *. (n -. 1.))


let sort ?(inc=true) x =
  let y = Array.copy x in
  let c = if inc then 1 else (-1) in
  Array.sort (fun a b ->
    if a < b then (-c)
    else if a > b then c
    else 0
  ) y;
  y


let argsort ?(inc=true) x =
  let n = Array.length x in
  let dir = if inc then 1 else (-1) in
  let order = Array.init n (fun i -> i) in begin
    Array.sort (fun i j -> dir * compare x.(i) x.(j)) order;
    order
  end


let _resolve_ties next d = function
  | `Average    -> float_of_int next -. float_of_int d /. 2.
  | `Min        -> float_of_int (next - d)
  | `Max        -> float_of_int next


let rank ?(ties_strategy=`Average) vs =
  let n = Array.length vs in
  let order = argsort vs in
  let ranks = Array.make n 0. in
  let d = ref 0 in begin
    for i = 0 to n - 1 do
      if i == n - 1 || compare vs.(order.(i)) vs.(order.(i + 1)) <> 0
      then
        let tie_rank = _resolve_ties (i + 1) !d ties_strategy in
        for j = i - !d to i do
          ranks.(order.(j)) <- tie_rank
        done;
        d := 0
      else
        incr d  (* Found a duplicate! *)
    done;
  end;
  ranks


let minmax_i x =
  assert (Array.length x > 0);
  let _min = ref x.(0) in
  let _max = ref x.(0) in
  let _min_idx = ref 0 in
  let _max_idx = ref 0 in
  Array.iteri (fun i a ->
    if a < !_min then (
      _min := a;
      _min_idx := i
    )
    else if a > !_max then (
      _max := a;
      _max_idx := i;
    )
  ) x;
  !_min_idx, !_max_idx


let min_i x = minmax_i x |> fst


let max_i x = minmax_i x |> snd


let min x = Array.fold_left min infinity x


let max x = Array.fold_left max neg_infinity x


let minmax x =
  let _min = ref infinity in
  let _max = ref neg_infinity in
  Array.iter (fun a ->
    if a < !_min then _min := a;
    if a > !_max then _max := a;
  ) x;
  !_min, !_max


let histogram x n =
  let a, b = minmax x in
  match a = b with
  | true  -> [|1|]
  | false -> (
      let c = (b -. a) /. (float_of_int n) in
      let d = Array.make n 0 in
      Array.iter (fun y ->
        let i = int_of_float ((y -. a) /. c) in
        let i = if y = b then i - 1 else i in
        d.(i) <- d.(i) + 1
      ) x;
      d
    )


(* ends here *)