1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
module Lavoisier = Lavoisier
module Either = Either
module Bij = Bij
let always x _ = x
type 'a t =
| Product : 'a t * 'b t -> ('a * 'b) t
| Map : ('a, 'b) Bij.t * 'a t -> 'b t
| Either : 'a t * 'a t -> 'a t
| Fix : ('a t -> 'a t) -> 'a t
| Symbol : char t
| IgnR : 'a t * unit t -> 'a t
| IgnL : unit t * 'b t -> 'b t
| Fail : string -> 'a t
| Payload : (char -> bool) * int * n -> string t
| Const : string -> string t
| Commit : unit t
| Pure : ('a -> 'a -> bool) * 'a -> 'a t
| Peek : 'a t * 'b t -> ('a, 'b) Either.t t
| Unsafe : ('a, 'k) v -> 'a t
and n = Infinite | Fixed of int
and ('a, 'k) v =
| Angstrom : 'a Angstrom.t -> ('a, angstrom) v
| Lavoisier : 'a Lavoisier.t -> ('a, lavoisier) v
and angstrom = |
and lavoisier = |
let take_while_with_max ~max p =
let open Angstrom in
scan_string 0 (fun n chr -> if p chr && n < max then Some (succ n) else None)
let string_for_all f x =
let rec go a i =
if i < String.length x then go (f x.[i] && a) (succ i) else a in
go true 0
let rec to_angstrom : type a. a t -> a Angstrom.t = function
| Product (a, b) ->
let pa = to_angstrom a in
let pb = to_angstrom b in
Angstrom.(
pa >>= fun a ->
pb >>= fun b -> return (a, b))
| Map (bij, x) -> (
let px = to_angstrom x in
Angstrom.(
px >>= fun x ->
try return (bij.Bij.to_ x) with Bij.Bijection -> fail "bijection"))
| Either (a, b) ->
let pa = to_angstrom a in
let pb = to_angstrom b in
Angstrom.(pa <|> pb)
| Fix f -> Angstrom.fix @@ fun m -> to_angstrom (f (Unsafe (Angstrom m)))
| Const str -> Angstrom.string str
| Unsafe (Angstrom p) -> p
| Unsafe (Lavoisier _) -> assert false
| Symbol -> Angstrom.any_char
| Pure (_compare, v) -> Angstrom.return v
| Payload (p, 0, Infinite) -> Angstrom.take_while p
| IgnL (p, q) ->
let p = to_angstrom p in
let q = to_angstrom q in
Angstrom.(p *> q)
| IgnR (p, q) ->
let p = to_angstrom p in
let q = to_angstrom q in
Angstrom.(p <* q)
| Payload (p, 1, Infinite) -> Angstrom.take_while1 p
| Payload (p, a, Fixed b) ->
Angstrom.(
take a >>= fun v ->
if string_for_all p v
then take_while_with_max ~max:(b - a) p >>= fun w -> return (v ^ w)
else fail "Invalid payload")
| Payload (p, a, Infinite) ->
Angstrom.(
take a >>= fun v ->
if string_for_all p v
then take_while p >>= fun w -> return (v ^ w)
else fail "Invalid payload")
| Peek (a, b) -> (
let pa = to_angstrom a in
let pb = to_angstrom b in
Angstrom.(
peek_char >>= function
| Some _ -> pa >>| fun x -> Either.L x
| None -> pb >>| fun y -> Either.R y))
| Fail err -> Angstrom.fail err
| Commit -> Angstrom.commit
let rec to_lavoisier : type a. a t -> a Lavoisier.t = function
| Product (a, b) ->
let da = to_lavoisier a in
let db = to_lavoisier b in
Lavoisier.product da db
| Map (bij, x) ->
let dx = to_lavoisier x in
Lavoisier.map dx bij.of_
| Commit -> Lavoisier.commit
| Either (a, b) ->
let da = to_lavoisier a in
let db = to_lavoisier b in
Lavoisier.choose da db
| Symbol -> Lavoisier.char
| Payload (p, 0, Infinite) -> Lavoisier.put_while0 p
| Payload (p, 1, Infinite) -> Lavoisier.put_while1 p
| Payload (p, a, Fixed b) -> Lavoisier.range ~a ~b p
| Payload (p, a, Infinite) -> Lavoisier.at_least_put p a
| Const str -> Lavoisier.string str
| IgnL (p, q) ->
let p = to_lavoisier p in
let q = to_lavoisier q in
Lavoisier.(p *> q)
| IgnR (p, q) ->
let p = to_lavoisier p in
let q = to_lavoisier q in
Lavoisier.(p <* q)
| Pure (compare, v) -> Lavoisier.pure ~compare v
| Peek (a, b) ->
let da = to_lavoisier a in
let db = to_lavoisier b in
Lavoisier.peek da db
| Fail err -> Lavoisier.fail err
| Unsafe (Lavoisier d) -> d
| Unsafe (Angstrom _) -> assert false
| Fix f -> Lavoisier.fix @@ fun m -> to_lavoisier (f (Unsafe (Lavoisier m)))
module Syntax = struct
let fail err = Fail err
let map f x = Map (f, x)
let product p q = Product (p, q)
let ( <$> ) f x = map f x
let ( <|> ) p q = Either (p, q)
let ( *> ) p q = IgnL (p, q)
let ( <* ) p q = IgnR (p, q)
let ( <*> ) p q = Product (p, q)
let fix f = Fix f
let const str = Const str
let any = Symbol
let while1 p = Payload (p, 1, Infinite)
let while0 p = Payload (p, 0, Infinite)
let nil =
Pure ((fun l0 l1 -> match (l0, l1) with [], [] -> true | _ -> false), [])
let none =
Pure
( (fun o0 o1 -> match (o0, o1) with None, None -> true | _ -> false),
None )
let commit = Commit
let rep1 p = fix @@ fun m -> Bij.cons <$> (p <*> (m <|> nil))
let rep0 p = rep1 p <|> nil
let sep_by1 ~sep p = Bij.cons <$> (p <*> rep0 (sep *> p))
let sep_by0 ~sep p = sep_by1 ~sep p <|> nil
let pure ~compare v = Pure (compare, v)
let peek a b = Peek (a, b)
let fixed n = Payload (always true, n, Fixed n)
let identity x = x
let rec fold_right ~k f l a =
match l with
| [] -> k a
| x :: r -> (fold_right [@tailcall]) ~k:(fun r -> k (f x r)) f r a
let choice l = fold_right ~k:identity ( <|> ) l (fail "choice")
let sequence l =
let fold x r = Bij.cons <$> (x <*> r) in
fold_right ~k:identity fold l nil
let count n t =
let rec make a = function 0 -> a | n -> make (t :: a) (pred n) in
sequence (make [] n)
let option t = Bij.some <$> t <|> none
let is_lower = function 'a' .. 'z' -> true | _ -> false
let is_upper = function 'A' .. 'Z' -> true | _ -> false
let is_digit = function '0' .. '9' -> true | _ -> false
let is_alpha = function 'a' .. 'z' -> true | 'A' .. 'Z' -> true | _ -> false
let lower = Bij.element is_lower <$> any
let upper = Bij.element is_upper <$> any
let alpha = Bij.element is_alpha <$> any
let digit = Bij.element is_digit <$> any
end