1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
open! Stdlib
let times = Debug.find "times"
let stats = Debug.find "stats"
let debug_stats = Debug.find "stats-debug"
open Code
let add_var = Var.ISet.add
let add_def vars defs x y =
add_var vars x;
let idx = Var.idx x in
defs.(idx) <- Var.Set.add y defs.(idx)
let add_dep deps x y =
let idx = Var.idx y in
deps.(idx) <- Var.Set.add x deps.(idx)
let rec arg_deps vars deps defs params args =
match params, args with
| x :: params, y :: args ->
add_dep deps x y;
add_def vars defs x y;
arg_deps vars deps defs params args
| [], [] -> ()
| _ -> assert false
let cont_deps blocks vars deps defs (pc, args) =
let block = Addr.Map.find pc blocks in
arg_deps vars deps defs block.params args
let expr_deps blocks vars deps defs x e =
match e with
| Constant _ | Apply _ | Prim _ | Special _ -> ()
| Closure (_, cont, _) -> cont_deps blocks vars deps defs cont
| Block (_, a, _, _) -> Array.iter a ~f:(fun y -> add_dep deps x y)
| Field (y, _, _) -> add_dep deps x y
let program_deps { blocks; _ } =
let nv = Var.count () in
let vars = Var.ISet.empty () in
let deps = Array.make nv Var.Set.empty in
let defs = Array.make nv Var.Set.empty in
Addr.Map.iter
(fun _pc block ->
List.iter block.body ~f:(fun i ->
match i with
| Let (x, e) ->
add_var vars x;
expr_deps blocks vars deps defs x e
| Assign (x, y) ->
add_dep deps x y;
add_def vars defs x y
| Event _ | Set_field _ | Array_set _ | Offset_ref _ -> ());
match block.branch with
| Return _ | Raise _ | Stop -> ()
| Branch cont -> cont_deps blocks vars deps defs cont
| Cond (_, cont1, cont2) ->
cont_deps blocks vars deps defs cont1;
cont_deps blocks vars deps defs cont2
| Switch (_, a1) ->
Array.iter a1 ~f:(fun cont -> cont_deps blocks vars deps defs cont)
| Pushtrap (cont, _, cont_h) ->
cont_deps blocks vars deps defs cont_h;
cont_deps blocks vars deps defs cont
| Poptrap cont -> cont_deps blocks vars deps defs cont)
blocks;
vars, deps, defs
let rec repr' reprs x acc =
let idx = Var.idx x in
match reprs.(idx) with
| None -> x, acc
| Some y -> repr' reprs y (x :: acc)
let repr reprs x =
let last, l = repr' reprs x [] in
List.iter l ~f:(fun v -> reprs.(Var.idx v) <- Some last);
last
let replace deps reprs x y =
let yidx = Var.idx y in
let xidx = Var.idx x in
deps.(yidx) <- Var.Set.union deps.(yidx) deps.(xidx);
reprs.(xidx) <- Some y;
true
let propagate1 deps defs reprs st x =
let prev = Var.Tbl.get st x in
if prev
then prev
else
let idx = Var.idx x in
let s =
Var.Set.fold (fun x s -> Var.Set.add (repr reprs x) s) defs.(idx) Var.Set.empty
in
defs.(idx) <- s;
match Var.Set.cardinal s with
| 1 -> replace deps reprs x (Var.Set.choose s)
| 2 -> (
match Var.Set.elements s with
| [ y; z ] when Var.compare x y = 0 -> replace deps reprs x z
| [ z; y ] when Var.compare x y = 0 -> replace deps reprs x z
| _ -> false)
| _ -> false
module G = Dgraph.Make_Imperative (Var) (Var.ISet) (Var.Tbl)
module Domain1 = struct
type t = bool
let equal = Bool.equal
let bot = false
end
module Solver1 = G.Solver (Domain1)
let solver1 vars deps defs =
let nv = Var.count () in
let reprs = Array.make nv None in
let g =
{ G.domain = vars; G.iter_children = (fun f x -> Var.Set.iter f deps.(Var.idx x)) }
in
ignore (Solver1.f () g (propagate1 deps defs reprs));
Array.mapi reprs ~f:(fun idx y ->
match y with
| Some y -> repr reprs y
| None -> Var.of_idx idx)
let f p =
let previous_p = p in
Code.invariant p;
let t = Timer.make () in
let t' = Timer.make () in
let vars, deps, defs = program_deps p in
if times () then Format.eprintf " phi-simpl. 1: %a@." Timer.print t';
let t' = Timer.make () in
let subst = solver1 vars deps defs in
if times () then Format.eprintf " phi-simpl. 2: %a@." Timer.print t';
Array.iteri subst ~f:(fun idx y ->
if Var.idx y = idx then () else Code.Var.propagate_name (Var.of_idx idx) y);
let need_stats = stats () || debug_stats () in
let count_uniq = ref 0 in
let count_seen = BitSet.create' (if need_stats then Var.count () else 0) in
let subst v1 =
let idx1 = Code.Var.idx v1 in
let v2 = subst.(idx1) in
if Code.Var.equal v1 v2
then v1
else (
if need_stats && not (BitSet.mem count_seen idx1)
then (
incr count_uniq;
BitSet.set count_seen idx1);
v2)
in
let p = Subst.Excluding_Binders.program subst p in
if times () then Format.eprintf " phi-simpl.: %a@." Timer.print t;
if stats () then Format.eprintf "Stats - phi updates: %d@." !count_uniq;
if debug_stats () then Code.check_updates ~name:"phi" previous_p p ~updates:!count_uniq;
Code.invariant p;
p