Source file Baby.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
# 1 "Baby.cppo.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

include Signatures

(* -------------------------------------------------------------------------- *)

(* The functor [Baby.Make] constructs balanced binary search trees
   based on a user-supplied balancing scheme. *)

module[@inline] Make
(E : OrderedType)
(T : CORE with type key = E.t)
= struct
include T


# 1 "Macros.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* Derived macros. *)

(* [EMPTY(t)] determines whether the tree [t] is empty, that is, a leaf. *)


# 19 "Macros.frag.ml"
(* [BOTH_EMPTY(l,r)] determines whether the trees [l] and [r] are both empty. *)

# 1 "Common.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Types. *)

type elt = key
type set = tree
type t = set

(* -------------------------------------------------------------------------- *)

(* Operations. *)

# 1 "Empty.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

let empty : tree =
  leaf

let is_empty (t : tree) : bool =
  match 
# 17 "Empty.frag.ml"
               (view t)  
# 17 "Empty.frag.ml"
                with
  | 
# 18 "Empty.frag.ml"
              Leaf  
# 18 "Empty.frag.ml"
         ->
      true
  | 
# 20 "Empty.frag.ml"
     Node (_,  _,  _)  
# 20 "Empty.frag.ml"
                  ->
      false
# 1 "MinMax.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

let rec min_elt_1 (default : key) (t : tree) : key =
  match 
# 14 "MinMax.frag.ml"
               (view t)  
# 14 "MinMax.frag.ml"
                with
  | 
# 15 "MinMax.frag.ml"
              Leaf  
# 15 "MinMax.frag.ml"
         ->
      default
  | 
# 17 "MinMax.frag.ml"
     Node (l,  v,  _)  
# 17 "MinMax.frag.ml"
                  ->
      min_elt_1 v l

let min_elt (t : tree) : key =
  match 
# 21 "MinMax.frag.ml"
               (view t)  
# 21 "MinMax.frag.ml"
                with
  | 
# 22 "MinMax.frag.ml"
              Leaf  
# 22 "MinMax.frag.ml"
         ->
      raise Not_found
  | 
# 24 "MinMax.frag.ml"
     Node (l,  v,  _)  
# 24 "MinMax.frag.ml"
                  ->
      min_elt_1 v l

let rec min_elt_opt_1 (default : key) (t : tree) : key option =
  match 
# 28 "MinMax.frag.ml"
               (view t)  
# 28 "MinMax.frag.ml"
                with
  | 
# 29 "MinMax.frag.ml"
              Leaf  
# 29 "MinMax.frag.ml"
         ->
      Some default
  | 
# 31 "MinMax.frag.ml"
     Node (l,  v,  _)  
# 31 "MinMax.frag.ml"
                  ->
      min_elt_opt_1 v l

let min_elt_opt (t : tree) : key option =
  match 
# 35 "MinMax.frag.ml"
               (view t)  
# 35 "MinMax.frag.ml"
                with
  | 
# 36 "MinMax.frag.ml"
              Leaf  
# 36 "MinMax.frag.ml"
         ->
      None
  | 
# 38 "MinMax.frag.ml"
     Node (l,  v,  _)  
# 38 "MinMax.frag.ml"
                  ->
      min_elt_opt_1 v l

let rec max_elt_1 (default : key) (t : tree) : key =
  match 
# 42 "MinMax.frag.ml"
               (view t)  
# 42 "MinMax.frag.ml"
                with
  | 
# 43 "MinMax.frag.ml"
              Leaf  
# 43 "MinMax.frag.ml"
         ->
      default
  | 
# 45 "MinMax.frag.ml"
     Node (_,  v,  r)  
# 45 "MinMax.frag.ml"
                  ->
      max_elt_1 v r

let max_elt (t : tree) : key =
  match 
# 49 "MinMax.frag.ml"
               (view t)  
# 49 "MinMax.frag.ml"
                with
  | 
# 50 "MinMax.frag.ml"
              Leaf  
# 50 "MinMax.frag.ml"
         ->
      raise Not_found
  | 
# 52 "MinMax.frag.ml"
     Node (_,  v,  r)  
# 52 "MinMax.frag.ml"
                  ->
      max_elt_1 v r

let rec max_elt_opt_1 (default : key) (t : tree) : key option =
  match 
# 56 "MinMax.frag.ml"
               (view t)  
# 56 "MinMax.frag.ml"
                with
  | 
# 57 "MinMax.frag.ml"
              Leaf  
# 57 "MinMax.frag.ml"
         ->
      Some default
  | 
# 59 "MinMax.frag.ml"
     Node (_,  v,  r)  
# 59 "MinMax.frag.ml"
                  ->
      max_elt_opt_1 v r

let max_elt_opt (t : tree) : key option =
  match 
# 63 "MinMax.frag.ml"
               (view t)  
# 63 "MinMax.frag.ml"
                with
  | 
# 64 "MinMax.frag.ml"
              Leaf  
# 64 "MinMax.frag.ml"
         ->
      None
  | 
# 66 "MinMax.frag.ml"
     Node (_,  v,  r)  
# 66 "MinMax.frag.ml"
                  ->
      max_elt_opt_1 v r

(* As in OCaml's Set library, [choose] and [choose_opt] choose the minimum
   element of the set. This is slow (logarithmic time), but guarantees that
   [choose] respects equality: that is, if the sets [s1] and [s2] are equal
   then [choose s1] and [choose s2] are equal. *)

let choose =
  min_elt

let choose_opt =
  min_elt_opt
# 1 "Mem.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Membership. *)

let rec mem (x : key) (t : tree) : bool =
  match 
# 18 "Mem.frag.ml"
               (view t)  
# 18 "Mem.frag.ml"
                with
  | 
# 19 "Mem.frag.ml"
              Leaf  
# 19 "Mem.frag.ml"
         ->
      false
  | 
# 21 "Mem.frag.ml"
     Node (l,  v,  r)  
# 21 "Mem.frag.ml"
                  ->
      let c = E.compare x v in
      c = 0 || mem x (if c < 0 then l else r)
# 1 "Find.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

let rec find (x : key) (t : tree) : key =
  match 
# 14 "Find.frag.ml"
               (view t)  
# 14 "Find.frag.ml"
                with
  | 
# 15 "Find.frag.ml"
              Leaf  
# 15 "Find.frag.ml"
         ->
      raise Not_found
  | 
# 17 "Find.frag.ml"
     Node (l,  v,  r)  
# 17 "Find.frag.ml"
                  ->
      let c = E.compare x v in
      if c = 0 then
        v
      else if c < 0 then
        find x l
      else
        find x r

let rec find_opt (x : key) (t : tree) : key option =
  match 
# 27 "Find.frag.ml"
               (view t)  
# 27 "Find.frag.ml"
                with
  | 
# 28 "Find.frag.ml"
              Leaf  
# 28 "Find.frag.ml"
         ->
      None
  | 
# 30 "Find.frag.ml"
     Node (l,  v,  r)  
# 30 "Find.frag.ml"
                  ->
      let c = E.compare x v in
      if c = 0 then
        Some v
      else if c < 0 then
        find_opt x l
      else
        find_opt x r

(* -------------------------------------------------------------------------- *)

(* [find_first] and its variants are as in OCaml's Set library. *)

(* A lot of repetitive code. *)

(* It is worth noting that [find_first] is not a naive linear search.
   Instead, it assumes that [f] is a monotonically increasing function
   of elements to Booleans. This implies that there is at most one
   position in the increasing sequence of the set elements where the
   value of [f] changes, and it changes from [false] to [true]. This
   position can be found in logarithmic time. *)

let rec find_first_aux v0 f (t : tree) =
  match 
# 53 "Find.frag.ml"
               (view t)  
# 53 "Find.frag.ml"
                with
  | 
# 54 "Find.frag.ml"
              Leaf  
# 54 "Find.frag.ml"
         ->
      v0
  | 
# 56 "Find.frag.ml"
     Node (l,  v,  r)  
# 56 "Find.frag.ml"
                  ->
      if f v then
        find_first_aux v f l
      else
        find_first_aux v0 f r

let rec find_first f (t : tree) =
  match 
# 63 "Find.frag.ml"
               (view t)  
# 63 "Find.frag.ml"
                with
  | 
# 64 "Find.frag.ml"
              Leaf  
# 64 "Find.frag.ml"
         ->
      raise Not_found
  | 
# 66 "Find.frag.ml"
     Node (l,  v,  r)  
# 66 "Find.frag.ml"
                  ->
      if f v then
        find_first_aux v f l
      else
        find_first f r

let rec find_first_opt_aux v0 f (t : tree) =
  match 
# 73 "Find.frag.ml"
               (view t)  
# 73 "Find.frag.ml"
                with
  | 
# 74 "Find.frag.ml"
              Leaf  
# 74 "Find.frag.ml"
         ->
      Some v0
  | 
# 76 "Find.frag.ml"
     Node (l,  v,  r)  
# 76 "Find.frag.ml"
                  ->
      if f v then
        find_first_opt_aux v f l
      else
        find_first_opt_aux v0 f r

let rec find_first_opt f (t : tree) =
  match 
# 83 "Find.frag.ml"
               (view t)  
# 83 "Find.frag.ml"
                with
  | 
# 84 "Find.frag.ml"
              Leaf  
# 84 "Find.frag.ml"
         ->
      None
  | 
# 86 "Find.frag.ml"
     Node (l,  v,  r)  
# 86 "Find.frag.ml"
                  ->
      if f v then
        find_first_opt_aux v f l
      else
        find_first_opt f r

let rec find_last_aux v0 f (t : tree) =
  match 
# 93 "Find.frag.ml"
               (view t)  
# 93 "Find.frag.ml"
                with
  | 
# 94 "Find.frag.ml"
              Leaf  
# 94 "Find.frag.ml"
         ->
      v0
  | 
# 96 "Find.frag.ml"
     Node (l,  v,  r)  
# 96 "Find.frag.ml"
                  ->
      if f v then
        find_last_aux v f r
      else
        find_last_aux v0 f l

let rec find_last f (t : tree) =
  match 
# 103 "Find.frag.ml"
               (view t)  
# 103 "Find.frag.ml"
                with
  | 
# 104 "Find.frag.ml"
              Leaf  
# 104 "Find.frag.ml"
         ->
      raise Not_found
  | 
# 106 "Find.frag.ml"
     Node (l,  v,  r)  
# 106 "Find.frag.ml"
                  ->
      if f v then
        find_last_aux v f r
      else
        find_last f l

let rec find_last_opt_aux v0 f (t : tree) =
  match 
# 113 "Find.frag.ml"
               (view t)  
# 113 "Find.frag.ml"
                with
  | 
# 114 "Find.frag.ml"
              Leaf  
# 114 "Find.frag.ml"
         ->
      Some v0
  | 
# 116 "Find.frag.ml"
     Node (l,  v,  r)  
# 116 "Find.frag.ml"
                  ->
      if f v then
        find_last_opt_aux v f r
      else
        find_last_opt_aux v0 f l

let rec find_last_opt f (t : tree) =
  match 
# 123 "Find.frag.ml"
               (view t)  
# 123 "Find.frag.ml"
                with
  | 
# 124 "Find.frag.ml"
              Leaf  
# 124 "Find.frag.ml"
         ->
      None
  | 
# 126 "Find.frag.ml"
     Node (l,  v,  r)  
# 126 "Find.frag.ml"
                  ->
      if f v then
        find_last_opt_aux v f r
      else
        find_last_opt f l
# 1 "Add.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* This is insertion in the style of BFS. *)

(* (Disabled.)

let add (k : key) (t : tree) : tree =
  let l, _, r = split k t in
  join l k r

 *)

(* This is a less elegant but more efficient version of insertion. *)

(* This implementation is taken from OCaml's Set library. *)

let rec add (x : key) (t : tree) : tree =
  match 
# 28 "Add.frag.ml"
               (view t)  
# 28 "Add.frag.ml"
                with
  | 
# 29 "Add.frag.ml"
              Leaf  
# 29 "Add.frag.ml"
         ->
      singleton x
  | 
# 31 "Add.frag.ml"
     Node (l,  v,  r)  
# 31 "Add.frag.ml"
                  ->
      let c = E.compare x v in
      if c = 0 then
        t
      else if c < 0 then
        let l' = add x l in
        if l == l' then t else join_neighbors l' v r
      else
        let r' = add x r in
        if r == r' then t else join_neighbors l v r'
# 1 "Remove.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* [remove_min_elt_1 l v r] removes the minimum element of the tree
   [NODE(l, v, r)]. *)

let rec remove_min_elt_1 (l : tree) (v : key) (r : tree) : tree =
  match 
# 17 "Remove.frag.ml"
               (view l)  
# 17 "Remove.frag.ml"
                with
  | 
# 18 "Remove.frag.ml"
              Leaf  
# 18 "Remove.frag.ml"
         ->
      r
  | 
# 20 "Remove.frag.ml"
     Node (ll,  lv,  lr)  
# 20 "Remove.frag.ml"
                     ->
      let l = remove_min_elt_1 ll lv lr in
      join_neighbors l v r

(* [remove_min_elt t] removes the minimum element of the tree [t]. *)

let remove_min_elt (t : tree) : tree =
  match 
# 27 "Remove.frag.ml"
               (view t)  
# 27 "Remove.frag.ml"
                with
  | 
# 28 "Remove.frag.ml"
              Leaf  
# 28 "Remove.frag.ml"
         ->
      raise Not_found
  | 
# 30 "Remove.frag.ml"
     Node (l,  v,  r)  
# 30 "Remove.frag.ml"
                  ->
      remove_min_elt_1 l v r

(* [remove_max_elt_1 l v r] removes the maximum element of the tree
   [NODE(l, v, r)]. *)

let rec remove_max_elt_1 (l : tree) (v : key) (r : tree) : tree =
  match 
# 37 "Remove.frag.ml"
               (view r)  
# 37 "Remove.frag.ml"
                with
  | 
# 38 "Remove.frag.ml"
              Leaf  
# 38 "Remove.frag.ml"
         ->
      l
  | 
# 40 "Remove.frag.ml"
     Node (rl,  rv,  rr)  
# 40 "Remove.frag.ml"
                     ->
      let r = remove_max_elt_1 rl rv rr in
      join_neighbors l v r

(* [remove_max_elt t] removes the maximum element of the tree [t]. *)

let remove_max_elt (t : tree) : tree =
  match 
# 47 "Remove.frag.ml"
               (view t)  
# 47 "Remove.frag.ml"
                with
  | 
# 48 "Remove.frag.ml"
              Leaf  
# 48 "Remove.frag.ml"
         ->
      raise Not_found
  | 
# 50 "Remove.frag.ml"
     Node (l,  v,  r)  
# 50 "Remove.frag.ml"
                  ->
      remove_max_elt_1 l v r

(* [join2_siblings l r] is analogous to [join2 l r], but requires the
   subtrees [l] and [r] to be siblings in a valid tree. *)

(* [join2_siblings] is named [merge] in OCaml's Set library. *)

(* This implementation arbitrarily chooses to place the minimum element of the
   tree [r] at the root. One could also choose to place the maximum element of
   the tree [l] at the root. One could imagine choosing between these
   alternatives, based on the weights or heights of the trees [l] and [r], if
   such a notion exists. That would remove the need for rebalancing. However,
   this seems to make essentially no difference in practice. *)

let join2_siblings (l : tree) (r : tree) : tree =
  match 
# 66 "Remove.frag.ml"
               (view l) 
# 66 "Remove.frag.ml"
               , 
# 66 "Remove.frag.ml"
                        (view r)  
# 66 "Remove.frag.ml"
                         with
  | _, 
# 67 "Remove.frag.ml"
                 Leaf  
# 67 "Remove.frag.ml"
            ->
      l
  | 
# 69 "Remove.frag.ml"
              Leaf 
# 69 "Remove.frag.ml"
        , _ ->
      r
  | _, 
# 71 "Remove.frag.ml"
        Node (rl,  rv,  rr)  
# 71 "Remove.frag.ml"
                        ->
      join_neighbors
        l
        (min_elt_1 rv rl)           (* same as [min_elt r] *)
        (remove_min_elt_1 rl rv rr) (* same as [remove_min_elt r] *)

(* This is removal in the style of BFS. *)

(* (Disabled.)

let remove (k : key) (t : tree) : tree =
  let l, _, r = split k t in
  join2 l r

 *)

(* This is a less elegant but more efficient version of removal. *)

(* This implementation is taken from OCaml's Set library. *)

let rec remove (x : key) (t : tree) : tree =
  match 
# 92 "Remove.frag.ml"
               (view t)  
# 92 "Remove.frag.ml"
                with
  | 
# 93 "Remove.frag.ml"
              Leaf  
# 93 "Remove.frag.ml"
         ->
      empty
  | 
# 95 "Remove.frag.ml"
     Node (l,  v,  r)  
# 95 "Remove.frag.ml"
                  ->
      let c = E.compare x v in
      if c = 0 then
        join2_siblings l r
      else if c < 0 then
        let l' = remove x l in
        if l == l' then t else join_neighbors l' v r
      else
        let r' = remove x r in
        if r == r' then t else join_neighbors l v r'
# 1 "Split.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* [split] is implemented in the same way in OCaml's Set library and by BFS. *)

(* We use the same code, but add a physical equality test that allows us to
   preserve sharing (and avoid memory allocation) in some cases. *)

let rec split (k : key) (t : tree) : tree * bool * tree =
  match 
# 19 "Split.frag.ml"
               (view t)  
# 19 "Split.frag.ml"
                with
  | 
# 20 "Split.frag.ml"
              Leaf  
# 20 "Split.frag.ml"
         ->
      leaf, false, leaf
  | 
# 22 "Split.frag.ml"
     Node (l,  m,  r)  
# 22 "Split.frag.ml"
                  ->
      let c = E.compare k m in
      if c = 0 then
        l, true, r
      else if c < 0 then
        let ll, b, lr = split k l in
        ll, b, (if lr == l then t else join lr m r)
      else
        let rl, b, rr = split k r in
        (if rl == r then t else join l m rl), b, rr

(* A specialized version of [split] that returns just the Boolean component
   of the result is [mem]. *)

(* [split13] is a variant of [split] that returns only the first and third
   components of the result. *)

let rec split13 (k : key) (t : tree) : tree * tree =
  match 
# 40 "Split.frag.ml"
               (view t)  
# 40 "Split.frag.ml"
                with
  | 
# 41 "Split.frag.ml"
              Leaf  
# 41 "Split.frag.ml"
         ->
      leaf, leaf
  | 
# 43 "Split.frag.ml"
     Node (l,  m,  r)  
# 43 "Split.frag.ml"
                  ->
      let c = E.compare k m in
      if c = 0 then
        l, r
      else if c < 0 then
        let ll, lr = split13 k l in
        ll, (if lr == l then t else join lr m r)
      else
        let rl, rr = split13 k r in
        (if rl == r then t else join l m rl), rr

(* [join2] is known as [concat] in OCaml's Set library. *)

(* This is the code proposed by BFS. Their [split_last] function
   corresponds to our functions [min_elt] and [remove_min_elt_1].

let rec split_last (l : tree) (k : key) (r : tree) : tree * key =
  match VIEW(r) with
  | LEAF ->
      l, k
  | NODE(l', k', r') ->
      let r, m = split_last l' k' r' in
      join l k r, m

let join2 (l : tree) (r : tree) : tree =
  match VIEW(l) with
  | LEAF ->
      r
  | NODE(ll, m, lr) ->
      let l', k = split_last ll m lr in
      join l' k r

 *)

(* [join2 l r] is implemented by extracting the maximum element of [l]
   or the minimum element of [r] and letting [join] do the rest of the
   work. *)

(* In order to maintain a better balance, one might wish to extract an
   element from the tree that seems larger. However, this seems to
   bring no improvement in practice, so we avoid this complication. *)

let join2 (l : tree) (r : tree) : tree =
  match 
# 86 "Split.frag.ml"
               (view l) 
# 86 "Split.frag.ml"
               , 
# 86 "Split.frag.ml"
                        (view r)  
# 86 "Split.frag.ml"
                         with
  | 
# 87 "Split.frag.ml"
              Leaf 
# 87 "Split.frag.ml"
        , _ ->
      r
  | _, 
# 89 "Split.frag.ml"
                 Leaf  
# 89 "Split.frag.ml"
            ->
      l
  | _, 
# 91 "Split.frag.ml"
        Node (rl,  rv,  rr)  
# 91 "Split.frag.ml"
                        ->
      join
        l
        (min_elt_1 rv rl)           (* same as [min_elt r] *)
        (remove_min_elt_1 rl rv rr) (* same as [remove_min_elt r] *)
# 1 "Enum.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Enumerations. *)

module Enum = struct

  type tree = t

  type enum =
    | End
    | More of elt * t * enum

  type t = enum

  let empty : enum =
    End

  let[@inline] is_empty (e : enum) : bool =
    match e with
    | End -> true
    | More _ -> false

  (* [cat_tree_enum t e] concatenates the tree [t] in front of the
     enumeration [e]. *)

  (* This function is named [cons_enum] in OCaml's Set library. *)

  let rec cat_tree_enum (t : tree) (e : enum) : enum =
    match 
# 41 "Enum.frag.ml"
                 (view t)  
# 41 "Enum.frag.ml"
                  with
    | 
# 42 "Enum.frag.ml"
                Leaf  
# 42 "Enum.frag.ml"
           ->
        e
    | 
# 44 "Enum.frag.ml"
       Node (l,  v,  r)  
# 44 "Enum.frag.ml"
                    ->
        cat_tree_enum l (More (v, r, e))

  (* [enum] converts a tree to an enumeration. *)

  let[@inline] enum (t : tree) : enum =
    cat_tree_enum t empty

  (* [filter_tree low t e] constructs an enumeration whose elements are: 1-
     the elements [x] of the tree [t] such that [low <= x] holds, followed
     with 2- all elements of the enumeration [e]. *)

  (* In [filter_tree low t e], only the tree [t] is filtered by the constraint
     [low <= x]. The enumeration [e] is not filtered (typically because it is
     already known that all of its elements satisfy this constraint). This is
     in contrast with [filter_tree_enum low t e] (below), where both [t] and
     [e] are filtered. *)

  let rec filter_tree (low : key) (t : tree) (e : enum) : enum =
    match 
# 63 "Enum.frag.ml"
                 (view t)  
# 63 "Enum.frag.ml"
                  with
    | 
# 64 "Enum.frag.ml"
                Leaf  
# 64 "Enum.frag.ml"
           ->
        e
    | 
# 66 "Enum.frag.ml"
       Node (l,  v,  r)  
# 66 "Enum.frag.ml"
                    ->
        let c = E.compare v low in
        if c = 0 then
          More (v, r, e)
        else if c < 0 then
          filter_tree low r e
        else
          filter_tree low l (More (v, r, e))

  let[@inline] from_enum (low : key) (t : tree) : enum =
    filter_tree low t empty

  (* [filter_tree_enum low r e] extracts the elements [x] that satisfy the
     constraint [low <= x] out of the sequence of the elements of the tree [r]
     and of the enumeration [e]. *)

  (* Thus, it is equivalent to [from low (cat_tree_enum r e)],
     but the function [from] has not been defined yet.
     [filter_tree_enum] is in fact used to define [from]. *)

  (* Both the tree [r] and the enumeration [e] are filtered. *)

  let rec filter_tree_enum (low : key) (r : tree) (e : enum) : enum =
    (* Peek past [r] at the first element [v'] of [e], if there is one. *)
    match e with
    | More (v', r', e') ->
        let c = E.compare low v' in
        if c > 0 then
          (* [v'] is below the threshold.
             The subtree [r] and the value [v'] must be discarded.
             Continue with [r'] and [e']. *)
          filter_tree_enum low r' e'
        else if c = 0 then
          (* [v'] is at the threshold.
             The subtree [r] must be discarded. [e] must be kept. *)
          e
        else (* c < 0 *)
          (* [v'] is above the threshold. *)
          (* No part of [e] must be discarded. *)
          (* Keep part of [r], followed with [e]. *)
          filter_tree low r e
    | End ->
        (* [e] is empty. Keep part of [r]. *)
        filter_tree low r e

  (* [from low e] extracts from the enumeration [e]
     the elements that lie at or above the threshold [low] . *)

  (* One could define [from low e] as [filter_tree_enum low leaf e].
     However, the following code is slightly more efficient. *)

  let from (low : key) (e : enum) : enum =
    match e with
    | More (v, r, e') ->
        if E.compare low v <= 0 then
          (* [v] is at or above the threshold. Keep all elements. *)
          e
        else
          (* [v] is below the threshold. [v] must be discarded. *)
          filter_tree_enum low r e'
    | End ->
        End

  let head (e : enum) : key =
    match e with
    | End            -> raise Not_found
    | More (v, _, _) -> v

  let tail (e : enum) : enum =
    match e with
    | End            -> raise Not_found
    | More (_, r, e) -> cat_tree_enum r e

  let head_opt (e : enum) : key option =
    match e with
    | End            -> None
    | More (v, _, _) -> Some v

  let tail_opt (e : enum) : enum option =
    match e with
    | End            -> None
    | More (_, r, e) -> Some (cat_tree_enum r e)

  (* [compare e1 e2] compares the enumerations [e1] and [e2]
     according to a lexicographic ordering. *)

  let rec compare (e1 : enum) (e2 : enum) : int =
    match e1, e2 with
    | End, End ->
        0
    | End, More _ ->
        -1
    | More _, End ->
        1
    | More (v1, r1, e1), More (v2, r2, e2) ->
        let c = E.compare v1 v2 in
        if c <> 0 then c else
        compare (cat_tree_enum r1 e1) (cat_tree_enum r2 e2)

  (* [to_seq] converts an enumeration to an OCaml sequence. *)

  let rec to_seq_node (e : enum) : key Seq.node =
    match e with
    | End ->
        Seq.Nil
    | More (v, r, e) ->
        Seq.Cons (v, fun () -> to_seq_node (cat_tree_enum r e))

  let to_seq (e : enum) : key Seq.t =
    fun () -> to_seq_node e

  (* [elements] converts an enumeration back to a tree. *)

  (* It is the only function in this file that constructs a tree.
     It exploits the construction function [join].
     It performs no key comparisons. *)

  (* I believe, but have not proved, that, thanks to the remarkable
     properties of [join], the time complexity of [elements] is only
     O(log n). *)

  let rec elements (v : key) (r : tree) (e : enum) : tree =
    match e with
    | End ->
        join leaf v r
    | More (v', r', e) ->
        elements v (join r v' r') e

  let elements (e : enum) : tree =
    match e with
    | End ->
        leaf
    | More (v, r, e) ->
        elements v r e

  (* Disjointness. *)

  exception NotDisjoint

  (* [filter_tree_disjoint low t e] returns the same result as
     [filter_tree low t e], except that it raises [NotDisjoint]
     if the key [low] appears in its result. *)

  let rec filter_tree_disjoint (low : key) (t : tree) (e : enum) : enum =
    match 
# 210 "Enum.frag.ml"
                 (view t)  
# 210 "Enum.frag.ml"
                  with
    | 
# 211 "Enum.frag.ml"
                Leaf  
# 211 "Enum.frag.ml"
           ->
        e
    | 
# 213 "Enum.frag.ml"
       Node (l,  v,  r)  
# 213 "Enum.frag.ml"
                    ->
        let c = E.compare v low in
        if c = 0 then
          raise NotDisjoint
        else if c < 0 then
          filter_tree_disjoint low r e
        else
          filter_tree_disjoint low l (More (v, r, e))

  (* [filter_tree_enum_disjoint low r e] returns the same result as
     [filter_tree_enum low r e], except that it raises [NotDisjoint]
     if the key [low] appears in its result. *)

  let rec filter_tree_enum_disjoint (low : key) (r : tree) (e : enum) : enum =
    match e with
    | More (v', r', e') ->
        let c = E.compare low v' in
        if c > 0 then
          filter_tree_enum_disjoint low r' e'
        else if c = 0 then
          raise NotDisjoint
        else
          filter_tree_disjoint low r e
    | End ->
        filter_tree_disjoint low r e

  (* [disjoint_more_more v1 r1 e1 v2 r2 e2] requires [v1 < v2]. It determines
     whether the enumerations [More (v1, r1, e1)] and [More (v2, r2, e2)] are
     disjoint. It either returns [true] or raises [NotDisjoint]. *)

  (* This is Veldhuizen's leapfrog join algorithm. *)

  let rec disjoint_more_more v1 r1 e1 v2 r2 e2 =
    assert (E.compare v1 v2 < 0);
    (* Skip past [v2] in the enumeration [e1]. *)
    (* If [v2] appears in [e1], fail. *)
    let e1 = filter_tree_enum_disjoint v2 r1 e1 in
    match e1 with
    | End ->
        (* If [e1] is now empty, we are done. *)
        true
    | More (v1, r1, e1) ->
        (* If [e1] is nonempty, then its front value [v1] must be greater than
           [v2]. Exchange the roles of the two enumerations and continue. *)
        assert (E.compare v2 v1 < 0);
        disjoint_more_more v2 r2 e2 v1 r1 e1

  (* [disjoint e1 e2] determines whether the enumerations [e1] and [e2] are
     disjoint. *)

  let disjoint (e1 : enum) (e2 : enum) : bool =
    match e1, e2 with
    | End, _
    | _, End ->
        true
    | More (v1, r1, e1), More (v2, r2, e2) ->
        let c = E.compare v1 v2 in
        if c = 0 then
          false
        else
          try
            if c < 0 then
              disjoint_more_more v1 r1 e1 v2 r2 e2
            else
              disjoint_more_more v2 r2 e2 v1 r1 e1
          with NotDisjoint ->
            false

  (* [length e] computes the length of the enumeration [e]. If we have
     a constant-time [cardinal] function on sets, then its complexity
     is logarithmic. Otherwise, its complexity is linear. *)

  let rec length_aux accu (e : enum) : int =
    match e with
    | End ->
        accu
    | More (_, r, e) ->
        length_aux (accu + cardinal r + 1) e

  let[@inline] length (e : enum) : int =
    length_aux 0 e

end (* Enum *)

(* -------------------------------------------------------------------------- *)

(* Enumerations in reverse (decreasing order). *)

(* I would rather avoid this code duplication, but we must provide at least
   [to_rev_seq], for compatibility with OCaml's Set library. *)

module RevEnum = struct

  type tree = t

  (* In the enumeration [More (e, l, v)], we have [e < l < v], but the
     enumeration is consumed (by the user) from the right to the left,
     so [v] is produced first, followed with the elements of the tree
     [l], followed with the elements of the enumeration [e]. *)

  type enum =
    | End
    | More of enum * t * elt

  let empty : enum =
    End

  (* [cat_enum_tree e t] concatenates the enumeration [e] in front of
     the tree [t]. It requires [e < t]. *)

  (* This function corresponds to [snoc_enum] in OCaml's Set library. *)

  let rec cat_enum_tree (e : enum) (t : tree) : enum =
    match 
# 326 "Enum.frag.ml"
                 (view t)  
# 326 "Enum.frag.ml"
                  with
    | 
# 327 "Enum.frag.ml"
                Leaf  
# 327 "Enum.frag.ml"
           ->
        e
    | 
# 329 "Enum.frag.ml"
       Node (l,  v,  r)  
# 329 "Enum.frag.ml"
                    ->
        cat_enum_tree (More (e, l, v)) r

  (* [enum] converts a tree to an enumeration. *)

  let[@inline] enum (t : tree) : enum =
    cat_enum_tree empty t

  (* [to_seq] converts an enumeration to an OCaml sequence. *)

  let rec to_seq_node (e : enum) : key Seq.node =
    match e with
    | End ->
        Seq.Nil
    | More (e, l, v) ->
        Seq.Cons (v, fun () -> to_seq_node (cat_enum_tree e l))

  (* let to_seq (e : enum) : key Seq.t = *)
  (*   fun () -> to_seq_node e *)

end
# 1 "Compare.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Comparison. *)

(* Instead of using enumerations of the trees [t1] and [t2], one could perform
   a recursive traversal of [t1], while consuming an enumeration of [t2]. I
   have benchmarked this variant: it allocates less memory, and can be faster,
   but can also be about twice slower. *)

let compare (t1 : tree) (t2 : tree) : int =
  if t1 == t2 then 0 else (* fast path *)
  Enum.(compare (enum t1) (enum t2))
# 1 "Equal.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Equality. *)

(* Equality can be implemented in several ways. E.g., [equal t1 t2] could be
   implemented in one line by [subset t1 t2 && subset t2 t1] or also in one
   line by [is_empty (xor t1 t2)]. (The latter idea could be optimized, so
   as to avoid actually constructing the tree [xor t1 t2] in memory.) Some
   experiments suggest that either of these approaches is more expensive
   than the following approach, which is based on [compare]. *)

(* In weight-balanced trees, the weight of a tree can be determined in
   constant time. This yields a fast path: if the weights and [t1] and [t2]
   differ, then they cannot possibly be equal. In height-balanced trees, the
   [weight] function returns a constant value, so this fast path is
   disabled. *)

let[@inline] equal t1 t2 =
  weight t1 = weight t2 && (* fast path *)
  compare t1 t2 = 0
# 1 "Union.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Union. *)

(* This is the simple, elegant version of [union] given by BFS.

let rec union (t1 : tree) (t2 : tree) : tree =
  match VIEW(t1), VIEW(t2) with
  | LEAF, _
  | _, LEAF ->
      leaf
  | NODE(_, _, _), NODE(l2, k2, r2) ->
      let l1, r1 = split13 k2 t1 in
      let l = union l1 l2
      and r = union r1 r2 in
      join l k2 r

 *)

(* Our implementation of [union] is in the same style as [inter].
   It inherits two features of OCaml's Set library:
   - the tree that seems smaller is split;
   - if a subtree is a singleton then [union] degenerates to [add].
   Furthermore, compared with OCaml's Set library, it is able to exploit
   physical equality when present, and it offers a stronger guarantee
   regarding the preservation of physical equality. *)

(* The recursive function [union] ensures that if the result is
   equal to [t2] then the result is physically equal to [t2]. *)

(* In the case where [t2] is a singleton, we have already checked that
   [t1] is neither empty nor a singleton, so the result of the union
   cannot possibly be equal to [t2]. Thus, the obligation to preserve
   sharing disappears in this case: using [add k2 t1] is safe. *)

let rec union (t1 : tree) (t2 : tree) : tree =
  match 
# 49 "Union.frag.ml"
               (view t1) 
# 49 "Union.frag.ml"
                , 
# 49 "Union.frag.ml"
                         (view t2)  
# 49 "Union.frag.ml"
                           with
  | 
# 50 "Union.frag.ml"
              Leaf 
# 50 "Union.frag.ml"
        , _ ->
      t2
  | _, 
# 52 "Union.frag.ml"
                 Leaf  
# 52 "Union.frag.ml"
            ->
      t1
  | 
# 54 "Union.frag.ml"
     Node (l1,  k1,  r1) 
# 54 "Union.frag.ml"
                    , 
# 54 "Union.frag.ml"
                       Node (l2,  k2,  r2)  
# 54 "Union.frag.ml"
                                       ->
      if 
# 55 "Union.frag.ml"
          (        (match        (view l1)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r1)  with           Leaf  -> true | _ -> false) )  
# 55 "Union.frag.ml"
                            then add k1 t2 else
      if 
# 56 "Union.frag.ml"
          (        (match        (view l2)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r2)  with           Leaf  -> true | _ -> false) )  
# 56 "Union.frag.ml"
                            then add k2 t1 else
      let l1, r1 = split13 k2 t1 in
      let l = union l1 l2
      and r = union r1 r2 in
      if l == l2 && r == r2 then t2 else (* preserve sharing *)
      join l k2 r

(* This toplevel wrapper tests which of the two arguments seems larger. (With
   weight-balanced trees, this is an exact test. With height-balanced trees,
   it is a heuristic test.) This argument, one may hope, might also be the
   result. Therefore, the recursive function [union] (above) is invoked with
   this argument as its second argument. Compared with [inter], this is the
   other way around. *)

let union t1 t2 =
  if t1 == t2 then t1 else (* fast path *)
  if seems_smaller t1 t2 then
    union t1 t2
  else
    union t2 t1
# 1 "Inter.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Intersection. *)

(* This is the simple, elegant version of [inter] given by BFS.

let rec inter (t1 : tree) (t2 : tree) : tree =
  match VIEW(t1), VIEW(t2) with
  | LEAF, _
  | _, LEAF ->
      leaf
  | NODE(_, _, _), NODE(l2, k2, r2) ->
      let l1, b, r1 = split k2 t1 in
      let l = inter l1 l2
      and r = inter r1 r2 in
      if b then join l k2 r else join2 l r

 *)

(* The recursive function [inter] ensures that if the result is
   equal to [t2] then the result is physically equal to [t2]. *)

(* Compared with the simple version (above),

   + there is a fast path for the case where [t1 == t2] holds;
   + there is specialized code for the case where [t2] is a
     singleton; in that case there is no need to use [split];
   + the code guarantees that if the result is equal to [t2]
     then [t2] itself is returned. *)

(* Adding specialized code for the case where [t1] is a singleton can lead
   to small gains or losses in speed; the effect seems unclear. *)

(* Adding specialized code for the cases where one of [l2] or [r2] is empty
   saves a few percent in time, and is not worth the extra complexity. *)

let rec inter (t1 : tree) (t2 : tree) : tree =
  match 
# 50 "Inter.frag.ml"
               (view t1) 
# 50 "Inter.frag.ml"
                , 
# 50 "Inter.frag.ml"
                         (view t2)  
# 50 "Inter.frag.ml"
                           with
  | 
# 51 "Inter.frag.ml"
              Leaf 
# 51 "Inter.frag.ml"
        , _
  | _, 
# 52 "Inter.frag.ml"
                 Leaf  
# 52 "Inter.frag.ml"
            ->
      leaf
  | 
# 54 "Inter.frag.ml"
     Node (_,  _,  _) 
# 54 "Inter.frag.ml"
                 , 
# 54 "Inter.frag.ml"
                    Node (l2,  k2,  r2)  
# 54 "Inter.frag.ml"
                                    ->
      if t1 == t2 then t2 else (* fast path *)
      if 
# 56 "Inter.frag.ml"
          (        (match        (view l2)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r2)  with           Leaf  -> true | _ -> false) )  
# 56 "Inter.frag.ml"
                            then
        (* The tree [t2] is [singleton k2]. *)
        if mem k2 t1 then t2 else leaf
      else
        let l1, b, r1 = split k2 t1 in
        let l = inter l1 l2
        and r = inter r1 r2 in
        if b then
          if l == l2 && r == r2 then t2 else (* preserve sharing *)
          join l k2 r
        else
          join2 l r

(* This toplevel wrapper serves two purposes. First, it contains a fast path
   for the case where [t1 == t2] holds. Second, it tests which of the two
   arguments seems smaller. (With weight-balanced trees, this is an exact
   test. With height-balanced trees, it is a heuristic test.) This argument,
   one may hope, might also be the result. Therefore, the recursive function
   [inter] (above) is invoked with this argument as its second argument. *)

let inter t1 t2 =
  if t1 == t2 then t1 else (* fast path *)
  if seems_smaller t1 t2 then
    inter t2 t1
  else
    inter t1 t2
# 1 "Diff.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Difference. *)

(* This is a simple, elegant version of [diff]. This version splits the
   tree [t1].

let rec diff (t1 : tree) (t2 : tree) : tree =
  match VIEW(t1), VIEW(t2) with
  | LEAF, _ ->
      leaf
  | _, LEAF ->
      t1
  | NODE(_, _, _), NODE(l2, k2, r2) ->
      let l1, r1 = split13 k2 t1 in
      let l = diff l1 l2
      and r = diff r1 r2 in
      join2 l r

 *)

(* This version of [diff] guarantees that if the result is equal to [t1]
   then [t1] itself is returned. *)

let rec diff (t1 : tree) (t2 : tree) : tree =
  match 
# 38 "Diff.frag.ml"
               (view t1) 
# 38 "Diff.frag.ml"
                , 
# 38 "Diff.frag.ml"
                         (view t2)  
# 38 "Diff.frag.ml"
                           with
  | 
# 39 "Diff.frag.ml"
              Leaf 
# 39 "Diff.frag.ml"
        , _ ->
      leaf
  | _, 
# 41 "Diff.frag.ml"
                 Leaf  
# 41 "Diff.frag.ml"
            ->
      t1
  | 
# 43 "Diff.frag.ml"
     Node (l1,  k1,  r1) 
# 43 "Diff.frag.ml"
                    , 
# 43 "Diff.frag.ml"
                       Node (l2,  k2,  r2)  
# 43 "Diff.frag.ml"
                                       ->
      if t1 == t2 then leaf else (* fast path *)
      if 
# 45 "Diff.frag.ml"
          (        (match        (view l1)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r1)  with           Leaf  -> true | _ -> false) )  
# 45 "Diff.frag.ml"
                            then
        (* [t1] is [singleton k1]. *)
        if mem k1 t2 then leaf else t1
      else if 
# 48 "Diff.frag.ml"
               (        (match        (view l2)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r2)  with           Leaf  -> true | _ -> false) )  
# 48 "Diff.frag.ml"
                                 then
        (* [t2] is [singleton k2]. *)
        remove k2 t1
      else
        let l2, b, r2 = split k1 t2 in
        let l = diff l1 l2
        and r = diff r1 r2 in
        if b then
          join2 l r
        else
          if l == l1 && r == r1 then t1 else (* preserve sharing *)
          join l k1 r
# 1 "Xor.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Symmetric difference. *)

(* This is a simple, elegant version of [xor].

let rec xor (t1 : tree) (t2 : tree) : tree =
  match VIEW(t1), VIEW(t2) with
  | LEAF, _ ->
      t2
  | _, LEAF ->
      t1
  | NODE(_, _, _), NODE(l2, k2, r2) ->
      let l1, b, r1 = split k2 t1 in
      let l = xor l1 l2
      and r = xor r1 r2 in
      if b then join2 l r else join l k2 r

 *)

(* Except in the case where [t1] or [t2] is empty, [xor t1 t2] cannot be
   equal to [t1] or [t2]. So there is no need to attempt to preserve
   sharing when constructing new nodes. *)

let rec xor (t1 : tree) (t2 : tree) : tree =
  match 
# 38 "Xor.frag.ml"
               (view t1) 
# 38 "Xor.frag.ml"
                , 
# 38 "Xor.frag.ml"
                         (view t2)  
# 38 "Xor.frag.ml"
                           with
  | 
# 39 "Xor.frag.ml"
              Leaf 
# 39 "Xor.frag.ml"
        , _ ->
      t2
  | _, 
# 41 "Xor.frag.ml"
                 Leaf  
# 41 "Xor.frag.ml"
            ->
      t1
  | 
# 43 "Xor.frag.ml"
     Node (_,  _,  _) 
# 43 "Xor.frag.ml"
                 , 
# 43 "Xor.frag.ml"
                    Node (l2,  k2,  r2)  
# 43 "Xor.frag.ml"
                                    ->
      if t1 == t2 then leaf else (* fast path *)
      if 
# 45 "Xor.frag.ml"
          (        (match        (view l2)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r2)  with           Leaf  -> true | _ -> false) )  
# 45 "Xor.frag.ml"
                            then
        (* [t2] is [singleton k2]. *)
        if mem k2 t1 then
          remove k2 t1
        else
          add k2 t1
      else
        let l1, b, r1 = split k2 t1 in
        let l = xor l1 l2
        and r = xor r1 r2 in
        if b then
          join2 l r
        else
          join l k2 r
# 1 "Disjoint.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Disjointness. *)

(* This simple version of [disjoint] has the same structure as [inter]. *)

(* (Disabled.)

let rec disjoint (t1 : tree) (t2 : tree) : bool =
  match VIEW(t1), VIEW(t2) with
  | LEAF, _
  | _, LEAF ->
      true
  | NODE(_, _, _), NODE(l2, k2, r2) ->
      let l1, b, r1 = split k2 t1 in
      not b && disjoint l1 l2 && disjoint r1 r2

 *)

(* The above code can be improved by adding a fast path (based on physical
   equality), by adding special cases for singletons, and by using a copy of
   [split] that does not construct the subtrees [l] and [r] if the Boolean
   result [b] is true. *)

(* I have played with these variations, but I find them to be consistently
   slower than the following approach, which is based on [Enum.disjoint]. *)

let disjoint t1 t2 =
  match 
# 41 "Disjoint.frag.ml"
               (view t1) 
# 41 "Disjoint.frag.ml"
                , 
# 41 "Disjoint.frag.ml"
                         (view t2)  
# 41 "Disjoint.frag.ml"
                           with
  | 
# 42 "Disjoint.frag.ml"
              Leaf 
# 42 "Disjoint.frag.ml"
        , _
  | _, 
# 43 "Disjoint.frag.ml"
                 Leaf  
# 43 "Disjoint.frag.ml"
            ->
      true (* fast path *)
  | _, _ ->
      t1 != t2 && (* fast path *)
      Enum.(disjoint (enum t1) (enum t2))

(* I have also played with a version of [disjoint] that does not use [split],
   therefore does not construct new trees; it does not allocate memory or
   perform rebalancing work. It can be fast, but I believe that its worst-case
   time complexity is not optimal. *)
# 1 "Subset.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* Inclusion. *)

(* This simple version of [subset] has canonical structure. *)

(* (Disabled.)

let rec subset (t1 : tree) (t2 : tree) : bool =
  match VIEW(t1), VIEW(t2) with
  | LEAF, _ ->
      true
  | _, LEAF ->
      false
  | NODE(_, _, _), NODE(l2, k2, r2) ->
      let l1, r1 = split13 k2 t1 in
      subset l1 l2 && subset r1 r2

 *)

(* This version adds a positive fast path (based on physical equality), a
   negative fast path (based on weights), and a special treatment of the case
   where [t1] is a singleton. (There is no need to add special treatment of
   the case where [t2] is a singleton. Indeed, the subcases where [t1] is
   empty or a singleton are taken care of already, and the subcase where [t1]
   has more than one element is caught by the weight test.) *)

(* In weight-balanced trees, the weight of a tree can be determined in time
   O(1). This yields a negative fast path: if [weight t1 <= weight t2] does
   not hold, then [subset t1 t2] returns false. In height-balanced trees, the
   [weight] function returns a constant value, so this fast path is
   disabled. *)

let rec subset (t1 : tree) (t2 : tree) : bool =
  match 
# 47 "Subset.frag.ml"
               (view t1) 
# 47 "Subset.frag.ml"
                , 
# 47 "Subset.frag.ml"
                         (view t2)  
# 47 "Subset.frag.ml"
                           with
  | 
# 48 "Subset.frag.ml"
              Leaf 
# 48 "Subset.frag.ml"
        , _ ->
      true
  | _, 
# 50 "Subset.frag.ml"
                 Leaf  
# 50 "Subset.frag.ml"
            ->
      false
  | 
# 52 "Subset.frag.ml"
     Node (l1,  k1,  r1) 
# 52 "Subset.frag.ml"
                    , 
# 52 "Subset.frag.ml"
                       Node (l2,  k2,  r2)  
# 52 "Subset.frag.ml"
                                       ->
      t1 == t2 || (* fast path *)
      if 
# 54 "Subset.frag.ml"
          (        (match        (view l1)  with           Leaf  -> true | _ -> false)  &&         (match        (view  r1)  with           Leaf  -> true | _ -> false) )  
# 54 "Subset.frag.ml"
                            then
        (* The tree [t1] is [singleton k1]. *)
        mem k1 t2
      else
        weight t1 <= weight t2 && (* fast path *)
        let l1, r1 = split13 k2 t1 in
        subset l1 l2 && subset r1 r2
# 1 "Conversions.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* [elements] converts a set, in linear time, to a sorted list. *)

let rec elements (t : tree) (k : elt list) : elt list =
  match 
# 18 "Conversions.frag.ml"
               (view t)  
# 18 "Conversions.frag.ml"
                with
  | 
# 19 "Conversions.frag.ml"
              Leaf  
# 19 "Conversions.frag.ml"
         ->
      k
  | 
# 21 "Conversions.frag.ml"
     Node (l,  v,  r)  
# 21 "Conversions.frag.ml"
                  ->
      elements l (v :: elements r k)

let[@inline] elements (t : tree) : elt list =
  elements t []

let to_list =
  elements

(* -------------------------------------------------------------------------- *)

(* [to_seq] constructs the increasing sequence of the elements of the
   tree [t]. *)

let to_seq (t : tree) : key Seq.t =
  fun () -> Enum.(to_seq_node (enum t))

(* [to_seq_from low t] constructs the increasing sequence of the
   elements [x] of the tree [t] such that [low <= x] holds. *)

let to_seq_from (low : key) (t : tree) : key Seq.t =
  fun () -> Enum.(to_seq_node (from_enum low t))

(* [to_rev_seq] constructs the decreasing sequence of the elements of
   the tree [t]. *)

let to_rev_seq (t : tree) : key Seq.t =
  fun () -> RevEnum.(to_seq_node (enum t))

(* -------------------------------------------------------------------------- *)

(* [to_array_slice t a i] writes the elements of the tree [t] to the
   array slice determined by the array [a] and the start index [i].
   It returns the end index of this slice. *)

let rec to_array_slice (t : tree) a i : int =
  assert (0 <= i && i + cardinal t <= Array.length a);
  match 
# 58 "Conversions.frag.ml"
               (view t)  
# 58 "Conversions.frag.ml"
                with
  | 
# 59 "Conversions.frag.ml"
              Leaf  
# 59 "Conversions.frag.ml"
         ->
      i
  | 
# 61 "Conversions.frag.ml"
     Node (l,  v,  r)  
# 61 "Conversions.frag.ml"
                  ->
      let i = to_array_slice l a i in
      a.(i) <- v;
      let i = i + 1 in
      to_array_slice r a i

(* -------------------------------------------------------------------------- *)

(* [to_array] converts a set, in linear time, to a sorted array. *)

let to_array (t : tree) : key array =
  match 
# 72 "Conversions.frag.ml"
               (view t)  
# 72 "Conversions.frag.ml"
                with
  | 
# 73 "Conversions.frag.ml"
              Leaf  
# 73 "Conversions.frag.ml"
         ->
      [||]
  | 
# 75 "Conversions.frag.ml"
     Node (_,  dummy,  _)  
# 75 "Conversions.frag.ml"
                      ->
      let n = cardinal t in
      let a = Array.make n dummy in
      let j = to_array_slice t a 0 in
      assert (n = j);
      a

(* -------------------------------------------------------------------------- *)

(* [of_sorted_unique_array_slice a i j] requires the array slice defined by
   array [a], start index [i], and end index [j] to be sorted and to contain
   no duplicate elements. It converts this array slice, in linear time, to a
   set. *)

let rec of_sorted_unique_array_slice a i j =
  assert (0 <= i && i <= j && j <= Array.length a);
  let n = j - i in
  match n with
  | 0 ->
      empty
  | 1 ->
      let x = a.(i) in
      singleton x
  | 2 ->
      let x = a.(i)
      and y = a.(i+1) in
      doubleton x y
  | 3 ->
      let x = a.(i)
      and y = a.(i+1)
      and z = a.(i+2) in
      tripleton x y z
  | _ ->
      let k = i + n/2 in
      let l = of_sorted_unique_array_slice a i k
      and v = a.(k)
      and r = of_sorted_unique_array_slice a (k+1) j in
      join_weight_balanced l v r

(* -------------------------------------------------------------------------- *)

(* [of_sorted_unique_array a] requires the array [a] to be sorted and to
   contain no duplicate elements. It converts this array, in linear time,
   to a set. *)

(* Because this function is unsafe (the user can provide an array that
   is not sorted and/or that has duplicate elements), it is disabled.
   [to_array] (below) is safe and is almost just as fast.

let[@inline] of_sorted_unique_array a =
  of_sorted_unique_array_slice a 0 (Array.length a)

 *)

(* -------------------------------------------------------------------------- *)

(* [of_array] converts an array to a set. This algorithm is adaptive. If the
   array is sorted, then its time complexity is O(n). If the array is not
   sorted, then its time complexity gradually degenerates to O(n.log n). *)

(* Each run of consecutive increasing elements is converted to a set, in
   linear time in the length of this run. Then, the union of these sets
   is computed. *)

let of_array a =
  let yield accu i j = union accu (of_sorted_unique_array_slice a i j) in
  ArrayExtra.foreach_increasing_run E.compare yield empty a

(* -------------------------------------------------------------------------- *)

(* [of_list] converts a list to a set. It is adaptive. *)

(* OCaml's Set library constructs a sorted list (using [List.sort_uniq]) and
   converts it directly to a tree. Instead, we convert the list to an array
   and use [of_array]. On random data, our approach seems slower by about 50%.
   On sorted data, our approach can be 2x or 3x faster. One drawback of our
   approach is that it requires linear auxiliary storage. *)

let of_list xs =
  xs |> Array.of_list |> of_array

(* -------------------------------------------------------------------------- *)

(* [of_seq] converts a sequence to a set. It is adaptive. *)

(* [of_seq] in OCaml's Set library is implemented using [add_seq], which
   itself is naively implemented by iterated insertions, so its complexity
   is O(n.log n), whereas it could be O(n). *)

let of_seq xs =
  xs |> Array.of_seq |> of_array

(* [add_seq] inserts a sequence into a set. *)

let add_seq xs t =
  union (of_seq xs) t
# 1 "Map.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* -------------------------------------------------------------------------- *)

(* [map] is defined in the same way as in OCaml's Set library. *)

(* [tree_below_key] and [key_below_tree] invoke [min_elt] or [max_elt],
   whose cost is the height of the subtree. The cumulative cost of
   these calls, during the execution of [map], is of the form
   1 * n/2 + 2 * n/4 + 3 * n/8 + ..., that is, O(n). *)

(* If the function [f] is monotone, then the tests in [lax_join]
   always succeed, so [join] is invoked at every node, and every
   such call runs in constant time, since no rebalancing is
   required. Thus, in this case, [map] runs in linear time. *)

(* Otherwise, I believe (but have not carefully checked) that the
   complexity of [map] is O(n.log n). *)

let[@inline] tree_below_key (t : tree) (x : key) : bool =
  match 
# 31 "Map.frag.ml"
               (view t)  
# 31 "Map.frag.ml"
                with
  | 
# 32 "Map.frag.ml"
              Leaf  
# 32 "Map.frag.ml"
         ->
      true
  | 
# 34 "Map.frag.ml"
     Node (_,  v,  r)  
# 34 "Map.frag.ml"
                  ->
      E.compare (max_elt_1 v r) x < 0

let[@inline] key_below_tree (x : key) (t : tree) : bool =
  match 
# 38 "Map.frag.ml"
               (view t)  
# 38 "Map.frag.ml"
                with
  | 
# 39 "Map.frag.ml"
              Leaf  
# 39 "Map.frag.ml"
         ->
      true
  | 
# 41 "Map.frag.ml"
     Node (l,  v,  _)  
# 41 "Map.frag.ml"
                  ->
      E.compare x (min_elt_1 v l) < 0

(* [lax_join l v r] is analogous to [join l v r], but does not
   require [l < v < r]. *)

let[@inline] lax_join l v r =
  if tree_below_key l v && key_below_tree v r then
    join l v r
  else
    union l (add v r)

let rec map f (t : tree) =
  match 
# 54 "Map.frag.ml"
               (view t)  
# 54 "Map.frag.ml"
                with
  | 
# 55 "Map.frag.ml"
              Leaf  
# 55 "Map.frag.ml"
         ->
      leaf
  | 
# 57 "Map.frag.ml"
     Node (l,  v,  r)  
# 57 "Map.frag.ml"
                  ->
     (* Enforce left-to-right evaluation order. *)
     let l' = map f l in
     let v' = f v in
     let r' = map f r in
     if l == l' && v == v' && r == r' then t (* preserve sharing *)
     else lax_join l' v' r'

(* -------------------------------------------------------------------------- *)

(* [lax_join2] plays the role of [try_concat] in OCaml's Set library,
   but is implemented in a slightly better way. *)

let lax_join2 t1 t2 =
  match 
# 71 "Map.frag.ml"
               (view t1) 
# 71 "Map.frag.ml"
                , 
# 71 "Map.frag.ml"
                         (view t2)  
# 71 "Map.frag.ml"
                           with
  | 
# 72 "Map.frag.ml"
              Leaf 
# 72 "Map.frag.ml"
        , _ ->
      t2
  | _, 
# 74 "Map.frag.ml"
                 Leaf  
# 74 "Map.frag.ml"
            ->
      t1
  | _, _ ->
      if E.compare (max_elt t1) (min_elt t2) < 0 then
        join2 t1 t2
      else
        union t1 t2

(* [filter_map] is defined in the same way as in OCaml's Set library. *)

let rec filter_map f (t : tree) =
  match 
# 85 "Map.frag.ml"
               (view t)  
# 85 "Map.frag.ml"
                with
  | 
# 86 "Map.frag.ml"
              Leaf  
# 86 "Map.frag.ml"
         ->
      leaf
  | 
# 88 "Map.frag.ml"
     Node (l,  v,  r)  
# 88 "Map.frag.ml"
                  ->
     (* Enforce left-to-right evaluation order. *)
     let l' = filter_map f l in
     let v' = f v in
     let r' = filter_map f r in
     match v' with
     | Some v' ->
         if l == l' && v == v' && r == r' then t (* preserve sharing *)
         else lax_join l' v' r'
     | None ->
         lax_join2 l' r'
# 1 "Filter.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* [filter] is the same as in OCaml's Set library. *)

(* Because [join] and [join2] have logarithmic cost, this implementation
   of [filter] has linear time complexity. *)

(* One could imagine a completely different implementation of [filter],
   also with linear time complexity, as follows: copy the data to an
   array, filter the array, reconstruct a tree. However, this approach
   would require linear auxiliary storage, may be slower in practice, and
   would be less effective at preserving sharing in scenarios where many
   elements are retained. *)

let rec filter p (t : tree) : tree =
  match 
# 26 "Filter.frag.ml"
               (view t)  
# 26 "Filter.frag.ml"
                with
  | 
# 27 "Filter.frag.ml"
              Leaf  
# 27 "Filter.frag.ml"
         ->
      leaf
  | 
# 29 "Filter.frag.ml"
     Node (l,  v,  r)  
# 29 "Filter.frag.ml"
                  ->
      (* Enforce left-to-right evaluation order. *)
      let l' = filter p l in
      let pv = p v in
      let r' = filter p r in
      if pv then
        if l == l' && r == r' then t else join l' v r'
      else
        join2 l' r'

(* [partition] is the same as in OCaml's Set library, with one extra
   optimization: as in [filter], we attempt to preserve sharing where
   possible. *)

let rec partition p (t : tree) : tree * tree =
  match 
# 44 "Filter.frag.ml"
               (view t)  
# 44 "Filter.frag.ml"
                with
  | 
# 45 "Filter.frag.ml"
              Leaf  
# 45 "Filter.frag.ml"
         ->
      leaf, leaf
  | 
# 47 "Filter.frag.ml"
     Node (l,  v,  r)  
# 47 "Filter.frag.ml"
                  ->
      (* Enforce left-to-right evaluation order. *)
      let lt, lf = partition p l in
      let pv = p v in
      let rt, rf = partition p r in
      if pv then
        (if lt == l && rt == r then t else join lt v rt),
        join2 lf rf
      else
        join2 lt rt,
        (if lf == l && rf == r then t else join lf v rf)
# 1 "RandomAccess.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

(* The functions in this file assume that we have a constant-time [cardinal]
   function. *)

(* -------------------------------------------------------------------------- *)

(* Access to an element, based on its index. *)

(* [get] has logarithmic complexity. *)

(* If [cardinal] requires linear time then this implementation of [get] has
   quadratic time complexity, which is unacceptable. In that case, it is
   preferable to just use [to_array], which has linear time complexity,
   followed with [Array.get]. *)

let rec get (t : tree) (i : int) : key =
  assert (0 <= i && i < cardinal t);
  match 
# 29 "RandomAccess.frag.ml"
               (view t)  
# 29 "RandomAccess.frag.ml"
                with
  | 
# 30 "RandomAccess.frag.ml"
              Leaf  
# 30 "RandomAccess.frag.ml"
         ->
      assert false
  | 
# 32 "RandomAccess.frag.ml"
     Node (l,  v,  r)  
# 32 "RandomAccess.frag.ml"
                  ->
      let cl = cardinal l in
      if i = cl then
        v
      else if i < cl then
        get l i
      else
        get r (i - (cl + 1))

let get (t : tree) (i : int) : key =
  if constant_time_cardinal then
    if 0 <= i && i < cardinal t then
      get t i
    else
      Printf.sprintf "get: index %d is out of expected range [0, %d)"
        i (cardinal t)
      |> invalid_arg
  else
    failwith "get: operation is not available"

(* -------------------------------------------------------------------------- *)

(* Discovering the index of an element, based on its value. *)

(* [index] has logarithmic complexity. *)

(* [index] is roughly analogous to [List.find_index], but has a different
   type; [index] expects an element [x], whereas [List.find_index] expects
   a predicate of type [elt -> bool]. *)

(* We could offer [find_index] on sets, with linear time complexity, but
   this seems pointless. The user can implement this function using an
   enumeration, if she so wishes. *)

let rec index (i : int) (x : key) (t : tree) : int =
  match 
# 67 "RandomAccess.frag.ml"
               (view t)  
# 67 "RandomAccess.frag.ml"
                with
  | 
# 68 "RandomAccess.frag.ml"
              Leaf  
# 68 "RandomAccess.frag.ml"
         ->
      raise Not_found
  | 
# 70 "RandomAccess.frag.ml"
     Node (l,  v,  r)  
# 70 "RandomAccess.frag.ml"
                  ->
      let c = E.compare x v in
      if c < 0 then
        index i x l
      else
        let i = i + cardinal l in
        if c = 0 then
          i
        else
          index (i + 1) x r

let[@inline] index x t =
  index 0 x t

let index x t =
  if constant_time_cardinal then
    index x t
  else
    failwith "index: operation is not available"

(* -------------------------------------------------------------------------- *)

(* Splitting by index -- in two parts. *)

let rec cut (t : tree) (i : int) : tree * tree =
  assert (0 <= i && i <= cardinal t);
  if i = 0 then
    leaf, t
  else if i = cardinal t then
    t, leaf
  else
    match 
# 101 "RandomAccess.frag.ml"
                 (view t)  
# 101 "RandomAccess.frag.ml"
                  with
    | 
# 102 "RandomAccess.frag.ml"
                Leaf  
# 102 "RandomAccess.frag.ml"
           ->
        assert false
    | 
# 104 "RandomAccess.frag.ml"
       Node (l,  v,  r)  
# 104 "RandomAccess.frag.ml"
                    ->
        let cl = cardinal l in
        if i <= cl then
          let ll, lr = cut l i in
          assert (lr != l);
          ll, join lr v r
        else (* [cl < i] *)
          let rl, rr = cut r (i - (cl + 1)) in
          assert (rl != r);
          join l v rl, rr

let cut (t : tree) (i : int) : tree * tree =
  if constant_time_cardinal then
    if 0 <= i && i <= cardinal t then
      cut t i
    else
      Printf.sprintf "cut: index %d is out of expected range [0, %d]"
        i (cardinal t)
      |> invalid_arg
  else
    failwith "cut: operation is not available"

(* -------------------------------------------------------------------------- *)

(* Splitting by index -- in three parts. *)

let rec cut_and_get (t : tree) (i : int) : tree * key * tree =
  assert (0 <= i && i < cardinal t);
  match 
# 132 "RandomAccess.frag.ml"
               (view t)  
# 132 "RandomAccess.frag.ml"
                with
  | 
# 133 "RandomAccess.frag.ml"
              Leaf  
# 133 "RandomAccess.frag.ml"
         ->
      assert false
  | 
# 135 "RandomAccess.frag.ml"
     Node (l,  v,  r)  
# 135 "RandomAccess.frag.ml"
                  ->
      let cl = cardinal l in
      if i = cl then
        l, v, r
      else if i < cl then
        let ll, lv, lr = cut_and_get l i in
        ll, lv, join lr v r
      else
        let rl, rv, rr = cut_and_get r (i - (cl + 1)) in
        join l v rl, rv, rr

let cut_and_get (t : tree) (i : int) : tree * key * tree =
  if constant_time_cardinal then
    if 0 <= i && i < cardinal t then
      cut_and_get t i
    else
      Printf.sprintf "cut_and_get: index %d is out of expected range [0, %d)"
        i (cardinal t)
      |> invalid_arg
  else
    failwith "cut_and_get: operation is not available"
# 1 "Iter.frag.ml"
(******************************************************************************)
(*                                                                            *)
(*                                    Baby                                    *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*       Copyright 2024--2024 Inria. All rights reserved. This file is        *)
(*       distributed under the terms of the GNU Library General Public        *)
(*       License, with an exception, as described in the file LICENSE.        *)
(*                                                                            *)
(******************************************************************************)

let rec iter f (t : tree) =
  match 
# 14 "Iter.frag.ml"
               (view t)  
# 14 "Iter.frag.ml"
                with
  | 
# 15 "Iter.frag.ml"
              Leaf  
# 15 "Iter.frag.ml"
         ->
      ()
  | 
# 17 "Iter.frag.ml"
     Node (l,  v,  r)  
# 17 "Iter.frag.ml"
                  ->
      iter f l; f v; iter f r

let rec fold f (t : tree) accu =
  match 
# 21 "Iter.frag.ml"
               (view t)  
# 21 "Iter.frag.ml"
                with
  | 
# 22 "Iter.frag.ml"
              Leaf  
# 22 "Iter.frag.ml"
         ->
      accu
  | 
# 24 "Iter.frag.ml"
     Node (l,  v,  r)  
# 24 "Iter.frag.ml"
                  ->
      fold f r (f v (fold f l accu))

let rec for_all p (t : tree) =
  match 
# 28 "Iter.frag.ml"
               (view t)  
# 28 "Iter.frag.ml"
                with
  | 
# 29 "Iter.frag.ml"
              Leaf  
# 29 "Iter.frag.ml"
         ->
      true
  | 
# 31 "Iter.frag.ml"
     Node (l,  v,  r)  
# 31 "Iter.frag.ml"
                  ->
      p v && for_all p l && for_all p r

let rec exists p (t : tree) =
  match 
# 35 "Iter.frag.ml"
               (view t)  
# 35 "Iter.frag.ml"
                with
  | 
# 36 "Iter.frag.ml"
              Leaf  
# 36 "Iter.frag.ml"
         ->
      false
  | 
# 38 "Iter.frag.ml"
     Node (l,  v,  r)  
# 38 "Iter.frag.ml"
                  ->
      p v || exists p l || exists p r

# 33 "Baby.cppo.ml"
end

(* -------------------------------------------------------------------------- *)

(* The module [Baby.H] provides ready-made height-balanced binary
   search trees. *)

(* Unfortunately, the OCaml compiler is pretty bad at optimization. In my
   experience, although it does usually inline functions when requested, it
   does not subsequently perform the simplifications that one might naturally
   expect. In particular, it does not simplify match-of-match, and cannot even
   simplify match-of-constructor. *)

(* For this reason, instead of applying the functor [Make] (above), we inline
   it, using a preprocessor hack. Thus, we avoid the overhead of going through
   a [view] function; instead, we have a [VIEW] macro. *)

module H = H

(* -------------------------------------------------------------------------- *)

(* The module [Baby.W] provides ready-made weight-balanced binary
   search trees. *)

module W = W

(* -------------------------------------------------------------------------- *)

(* The following modules must be exported, because they are (or may be) used
   in the benchmarks. Because they are somewhat unlikely to be useful to an
   end user, their existence is not advertised. *)

module Height = Height
module Weight = Weight