Source file List.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
open Functional

let nil = []
let cons x xs = x :: xs

let fold null_case list_case term =
  let rec _visit xs return =
    match xs with
    | [] -> return null_case
    | x :: xs' ->
      _visit xs' (return <== (list_case x))
  in
  _visit term identity

let fold_rev null_case list_case term =
  let rec _visit xs result =
    match xs with
    | [] -> result
    | x :: xs' ->
      _visit xs' (list_case x result)
  in
  _visit term null_case

let length xs =
  fold_rev Nat.zero (fun _x -> Nat.succ) xs

let iter f xs =
  fold () (fun x () -> f x) xs

let init count item =
  if count <= 0 then [] else
  let rec _visit index result =
    if index = count then result else
    _visit (index + 1) (item :: result)
  in
  _visit 0 []

let map f xs =
  fold [] (cons <== f) xs

let conc xs ys =
  fold ys cons xs

let flatten xs =
  fold [] conc xs

let rec zip xs ys fail return =
  match xs, ys with
  | [], [] -> return []
  | x :: xs1, y :: ys1 ->
    zip xs1 ys1 fail @@ fun xys ->
    return ((x, y) :: xys)
  | _, _ -> fail ()

let select order n xs =
  let _ordered x1 x2 =
    let open Order in
    match order x1 x2 with
    | LT | EQ -> true
    | GT -> false
  in
  let _sort_2 x1 x2 return =
    if _ordered x1 x2
    then return x1 x2
    else return x2 x1
  in
  let _sort_3 x1 x2 x3 return =
    _sort_2 x1 x2 @@ fun x4 x5 ->
    if _ordered x3 x4 then return x3 x4 x5 else
    if _ordered x3 x5 then return x4 x3 x5 else
    return x4 x5 x3
  in
  let _sort_4 x1 x2 x3 x4 return =
    _sort_3 x1 x2 x3 @@ fun x5 x6 x7 ->
    if _ordered x4 x5 then return x4 x5 x6 x7 else
    if _ordered x4 x6 then return x5 x4 x6 x7 else
    if _ordered x4 x7 then return x5 x6 x4 x7 else
    return x5 x6 x7 x4
  in
  let _sort_5 x1 x2 x3 x4 x5 return =
    _sort_4 x1 x2 x3 x4 @@ fun x6 x7 x8 x9 ->
    if _ordered x7 x5 then
      if _ordered x5 x8 then return x6 x7 x5 x8 x9 else
      if _ordered x5 x9 then return x6 x7 x8 x5 x9 else
      return x6 x7 x8 x9 x5
    else
      if _ordered x6 x5
      then return x6 x5 x7 x8 x9
      else return x5 x6 x7 x8 x9
  in
  let rec _median_of_medians xs return =
    let rec _median_of_fives xs return =
      match xs with
      | [] -> assert false (* Invariant *)
      | x1 :: [] -> return [ x1 ]
      | x1 :: x2 :: [] ->
        _sort_2 x1 x2 @@ fun _x3 x4 -> return [ x4 ]
      | x1 :: x2 :: x3 :: [] ->
        _sort_3 x1 x2 x3 @@ fun _x4 x5 _x6 -> return [ x5 ]
      | x1 :: x2 :: x3 :: x4 :: [] ->
        _sort_4 x1 x2 x3 x4 @@ fun _x5 x6 _x7 _x8 -> return [ x6 ]
      | x1 :: x2 :: x3 :: x4 :: x5 :: [] ->
        _sort_5 x1 x2 x3 x4 x5 @@ fun _x6 _x7 x8 _x9 _x10 -> return [ x8 ]
      | x1 :: x2 :: x3 :: x4 :: x5 :: xs1 ->
        _sort_5 x1 x2 x3 x4 x5 @@ fun _x6 _x7 x8 _x9 _x10 ->
        _median_of_fives xs1 (return <== (cons x8))
    in
    match xs with
    | [] -> assert false (* Invariant *)
    | x1 :: [] -> return x1
    | x1 :: x2 :: [] ->
      _sort_2 x1 x2 @@ fun x3 _x4 -> return x3
    | x1 :: x2 :: x3 :: [] ->
      _sort_3 x1 x2 x3 @@ fun _x4 x5 _x6 -> return x5
    | x1 :: x2 :: x3 :: x4 :: [] ->
      _sort_4 x1 x2 x3 x4 @@ fun _x5 x6 _x7 _x8 -> return x6
    | x1 :: x2 :: x3 :: x4 :: x5 :: [] ->
      _sort_5 x1 x2 x3 x4 x5 @@ fun _x6 _x7 x8 _x9 _x10 -> return x8
    | _ ->
      _median_of_fives xs @@ fun medians ->
      _median_of_medians medians return
  in
  let _partition xs pivot return =
    let rec _visit xs k left right =
      match xs with
      | [] -> return k left right
      | x :: xs1 ->
        if _ordered x pivot
        then _visit xs1 (k + 1) (x :: left) right
        else _visit xs1 k left (x :: right)
    in
    _visit xs 0 [] []
  in
  let rec _quick n xs return =
    match xs with
    | [] -> assert false (* Invariant *)
    | x1 :: [] ->
      begin match n with
      | 0 -> return x1
      | _ -> assert false (* Invariant *)
      end
    | x1 :: x2 :: [] ->
      _sort_2 x1 x2 @@ fun x3 x4 ->
      begin match n with
      | 0 -> return x3
      | 1 -> return x4
      | _ -> assert false (* Invariant *)
      end
    | x1 :: x2 :: x3 :: [] ->
      _sort_3 x1 x2 x3 @@ fun x4 x5 x6 ->
      begin match n with
      | 0 -> return x4
      | 1 -> return x5
      | 2 -> return x6
      | _ -> assert false (* Invariant *)
      end
    | x1 :: x2 :: x3 :: x4 :: [] ->
      _sort_4 x1 x2 x3 x4 @@ fun x5 x6 x7 x8 ->
      begin match n with
      | 0 -> return x5
      | 1 -> return x6
      | 2 -> return x7
      | 3 -> return x8
      | _ -> assert false (* Invariant *)
      end
    | x1 :: x2 :: x3 :: x4 :: x5 :: [] ->
      _sort_5 x1 x2 x3 x4 x5 @@ fun x6 x7 x8 x9 x10 ->
      begin match n with
      | 0 -> return x6
      | 1 -> return x7
      | 2 -> return x8
      | 3 -> return x9
      | 4 -> return x10
      | _ -> assert false (* Invariant *)
      end
    | _ ->
      _median_of_medians xs @@ fun pivot ->
      _partition xs pivot @@ fun k left right ->
      length xs |> fun l ->
      if k = l then return pivot else
      if n < k then _quick n left return else
      _quick (n - k) right return
  in
  _quick n xs identity

let sort order xs =
  let _ordered x1 x2 =
    let open Order in
    match order x1 x2 with
    | LT | EQ -> true
    | GT -> false
  in
  let _sort_2 x1 x2 return =
    if _ordered x1 x2
    then return x1 x2
    else return x2 x1
  in
  let _sort_3 x1 x2 x3 return =
    _sort_2 x1 x2 @@ fun x4 x5 ->
    if _ordered x3 x4 then return x3 x4 x5 else
    if _ordered x3 x5 then return x4 x3 x5 else
    return x4 x5 x3
  in
  let _sort_4 x1 x2 x3 x4 return =
    _sort_3 x1 x2 x3 @@ fun x5 x6 x7 ->
    if _ordered x4 x5 then return x4 x5 x6 x7 else
    if _ordered x4 x6 then return x5 x4 x6 x7 else
    if _ordered x4 x7 then return x5 x6 x4 x7 else
    return x5 x6 x7 x4
  in
  let _sort_5 x1 x2 x3 x4 x5 return =
    _sort_4 x1 x2 x3 x4 @@ fun x6 x7 x8 x9 ->
    if _ordered x7 x5 then
      if _ordered x5 x8 then return x6 x7 x5 x8 x9 else
      if _ordered x5 x9 then return x6 x7 x8 x5 x9 else
      return x6 x7 x8 x9 x5
    else
      if _ordered x6 x5
      then return x6 x5 x7 x8 x9
      else return x5 x6 x7 x8 x9
  in
  let _partition xs pivot return =
    let rec _visit xs ln rn left right =
      match xs with
      | [] -> return ln rn left right
      | x :: xs1 ->
        if _ordered x pivot
        then _visit xs1 (ln + 1) rn (x :: left) right
        else _visit xs1 ln (rn + 1) left (x :: right)
    in
    _visit xs 0 0 [] []
  in
  let rec _quick xs n result return =
    match xs with
    | [] -> return result
    | x1 :: [] -> return (x1 :: result)
    | x1 :: x2 :: [] ->
      _sort_2 x1 x2 @@ fun x3 x4 ->
      return (x3 :: x4 :: result)
    | x1 :: x2 :: x3 :: [] ->
      _sort_3 x1 x2 x3 @@ fun x4 x5 x6 ->
      return (x4 :: x5 :: x6 :: result)
    | x1 :: x2 :: x3 :: x4 :: [] ->
      _sort_4 x1 x2 x3 x4 @@ fun x5 x6 x7 x8 ->
      return (x5 :: x6 :: x7 :: x8 :: result)
    | x1 :: x2 :: x3 :: x4 :: x5 :: [] ->
      _sort_5 x1 x2 x3 x4 x5 @@ fun x6 x7 x8 x9 x10 ->
      return (x6 :: x7 :: x8 :: x9 :: x10 :: result)
    | _ ->
      select order (n / 2) xs |> fun pivot ->
      _partition xs pivot @@ fun ln rn left right ->
      length xs |> fun l ->
      if ln = l then return xs else
      _quick right rn result @@ fun result1 ->
      _quick left ln result1 return
  in
  length xs |> fun l ->
  _quick xs l [] identity

let sort_unique order xs =
  let open Order in
  let rec _visit x xs return =
    match xs with
    | [] -> return [ x ]
    | y :: xs1 ->
      match order x y with
      | GT -> assert false (* Invariant *)
      | LT -> _visit y xs1 (return <== (cons x))
      | EQ -> _visit x xs1 return
  in
  sort order xs |> fun xs1 ->
  match xs1 with
  | [] -> []
  | x :: xs2 ->
    _visit x xs2 identity