Source file dum.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) 2008 Wink Technologies Inc. (contact martin@wink.com)   *)
(*  Copyright (C) 2008 Jean-Christophe Filliatre                          *)
(*  Copyright (C) 2005 Merjis Ltd., Richard W.M. Jones                    *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)


open Printf

(* Pointers already visited are stored in a hash-table, where
   comparisons are done using physical equality. *)

module H = Hashtbl.Make(
  struct 
    type t = Obj.t 
    let equal = (==) 
    let hash r = Hashtbl.hash (Obj.obj r : int)
  end)

type node =
    Int of int
  | Cycle of address option ref
  | Block of block

and block_value =
    String of string
  | Float of float
  | Array of node list
  | Float_array of float array
  | Tag of (int * node list)
  | Object of (int * node list)
  | Closure of node list
  | Lazy of node (* a closure *)
  | Forward of node
  | Opaque of string (* not representable *)
  | List of node list (* anything that could be a non-empty list *)

and address = int

and block = {
  mutable address : address option ref;
  mutable show_address : bool;
  node_value : block_value lazy_t;
}

let create_node_table () = 
  let counter = ref 0 in
  counter, (H.create 257 : block H.t)

let get (_, tbl) r = 
  try 
    let x = H.find tbl r in
    x.show_address <- true;
    Some x.address
  with Not_found -> 
    None

let add (counter, tbl) r lz =
  assert (not (H.mem tbl r));
  let x = {
    address = ref None;
    show_address = false;
    node_value = lz
  } in
  H.add tbl r x;
  x


(* Don't use an array here.
   (unless you make sure it's not created as a double array)
*)
let get_fields r n =
  let l = ref [] in
  for i = n - 1 downto 0 do
    l := Obj.field r i :: !l
  done;
  !l


let is_list tbl r =
  let rec is_list tbl r =
    if Obj.is_int r then
      r = Obj.repr 0 (* [] *)
    else
      let s = Obj.size r and t = Obj.tag r in
      t = 0 && s = 2 && not (H.mem tbl r) &&
	  (H.add tbl r ();
	   let tail = Obj.field r 1 in
	   is_list tbl tail)
  in
  let b = is_list tbl r in
  H.clear tbl;
  b

    
let rec get_list accu r =
  if Obj.is_int r then
    List.rev accu
  else 
    let h = Obj.field r 0 in
    get_list (h :: accu) (Obj.field r 1)


let map f l = List.rev (List.rev_map f l)


let default_lim = ref 100
let default_show_lazy = ref false

exception Too_big

let rev_iter f l = List.iter f (List.rev l)


(* Set the show_address field *)
let rec force = function
    Int _ -> ()
  | Cycle _ -> ()
  | Block b ->
      match Lazy.force b.node_value with
	  String _ -> ()
	| Float _ -> ()
	| Array l -> List.iter force l
	| Float_array _ -> ()
	| Tag (t, l) -> List.iter force l
	| Object (id, l) -> List.iter force l
	| Closure l -> List.iter force l
	| Lazy x -> force x
	| Forward x -> force x
	| Opaque _ -> ()
	| List l -> List.iter force l

(* Set the actual addresses, using left-to-right numbering *)
let set_addresses x =
  let counter = ref 0 in

  let rec force = function
      Int _ -> ()
    | Cycle _ -> ()
    | Block b ->
	if b.show_address then (
	  b.address := Some !counter;
	  incr counter
	);
	match Lazy.force b.node_value with
	    String s -> ()
	  | Float _ -> ()
	  | Array l -> List.iter force l
	  | Float_array _ -> ()
	  | Tag (t, l) -> List.iter force l
	  | Object (id, l) -> List.iter force l
	  | Closure l -> List.iter force l
	  | Lazy x -> force x
	  | Forward x -> force x
	  | Opaque _ -> ()
	  | List l -> List.iter force l
  in

  force x



let dump_tree ?show_lazy ?lim x =

  let lim = max 1 (
    match lim with
	None -> !default_lim
      | Some n -> n
  ) in

  let show_lazy =
    match show_lazy with
	None -> !default_show_lazy
      | Some b -> b
  in

  let tbl = create_node_table () in
  let tbl2 = H.create 10 in
  let size = ref 0 in

  let rec dump r =
    incr size;
    if !size > lim then
      raise Too_big
    else
      if Obj.is_int r then
	Int (Obj.obj r : int)
      else 
	dump_block r

  and dump_block r =
    match get tbl r with
	Some addr -> Cycle addr
      | None ->
	  let lz = lazy (
	    let saved_size = !size in
	    try
	      dump_shared_block r
	    with Too_big ->
	      size := saved_size;
	      Opaque "..."
	  ) in
	  Block (add tbl r lz)

  and dump_shared_block r =
    let s = Obj.size r and t = Obj.tag r in
    if is_list tbl2 r then
      let fields = get_list [] r in
      List (map dump fields)
    else if t = 0 then
      let fields = get_fields r s in
      Array (map dump fields)
    else if t = Obj.double_array_tag then
      Float_array (Obj.obj r : float array)
    else if t = Obj.lazy_tag then
      if show_lazy then (
	assert (s = 1);
	Lazy (dump (Obj.field r 0))
      )
      else
	Opaque "lazy"
    else if t = Obj.forward_tag then (
      if show_lazy then (
	assert (Lazy.lazy_is_val (Obj.obj r));
	Forward (dump (Obj.repr (Lazy.force_val (Obj.obj r))))
      )
      else
	Opaque "forward"
    )
    else if t = Obj.closure_tag then
      let fields = get_fields r s in
      assert (s >= 1);
      Closure (map dump (List.tl fields))

    else if t = Obj.object_tag then
      let fields = get_fields r s in
      assert (s >= 2);
      let id = 
	let r = Obj.repr (List.nth fields 1) in
	assert (Obj.is_int r);
	(Obj.obj r : int)
      in
      let slots = map dump (List.tl (List.tl fields)) in
      (* No information on decoding the class (first field).
	 So just print out the ID and the slots. *)
      Object (id, slots)
	
    else if t = Obj.infix_tag then
      Opaque "infix"
    else if t < Obj.no_scan_tag then
      let fields = get_fields r s in
      Tag (t, map dump fields)
    else if t = Obj.string_tag then (
      let str = (Obj.obj r : string) in
      size := !size + (String.length str / 8);
      if !size > lim then
	raise Too_big
      else
	String str
    )
    else if t = Obj.double_tag then
      Float (Obj.obj r : float)
    else if t = Obj.abstract_tag then
      Opaque "abstract"
    else if t = Obj.custom_tag then
      Opaque "custom"
    else if t = Obj.final_tag then
      Opaque "final"
    else if t = Obj.out_of_heap_tag then
      Opaque "out of heap"
    else
      Opaque ("unknown tag " ^ string_of_int t)
	
  in
  
  let result = dump (Obj.repr x) in
  force result;
  set_addresses result;
  result



module E = Easy_format


let atom = E.atom

let list = E.list

let tuple = { list with
		E.space_after_opening = false;
		space_before_closing = false }

let label = E.label

let format_float x = E.Atom (string_of_float x, atom)

let rec format = function
    Int i -> E.Atom (string_of_int i, atom)
  | Cycle x ->
      (match !x with
	   None -> assert false
	 | Some n -> E.Atom (sprintf "#%i" n, atom))
  | Block b ->
      let node =
	match Lazy.force b.node_value with
	    String s -> E.Atom (sprintf "%S" s, atom)
	  | Float f -> format_float f

	  | Array a -> 
	      let l = map format a in
	      E.List (("(", "", ")", tuple), l)

	  | Float_array a ->
	      let l = 
		Array.to_list (Array.map format_float a) in
	      E.List (("[|", "", "|]", list), l)
			
	  | Tag (t, a) -> 
	      let l = map format a in
	      E.Label (
		(E.Atom (sprintf "tag%i" t, atom), label),
		E.List (("(", "", ")", tuple), l)
	      )

	  | Object (id, a) ->
	      let l = map format a in
	      E.Label (
		(E.Atom (sprintf "object%i" id, atom), label),
		E.List (("(", "", ")", tuple), l)
	      )

	  | Closure a ->
	      let l = map format a in
	      E.Label (
		(E.Atom ("closure", atom), label),
		E.List (("(", "", ")", tuple), l)
	      )

	  | Lazy x ->
	      let l = [ format x ] in
	      E.Label (
		(E.Atom ("lazy", atom), label),
		E.List (("(", "", ")", tuple), l)
	      )

	  | Forward x ->
	      let l = [ format x ] in
	      E.Label (
		(E.Atom ("forward", atom), label),
		E.List (("(", "", ")", tuple), l)
	      )

	  | Opaque s ->
	      E.Atom (sprintf "<%s>" s, atom)

	  | List nodes ->
	      let l = map format nodes in
	      E.List (("[", "", "]", list), l)
      in
      if b.show_address then
	let n =
	  match !(b.address) with
	      None -> assert false
	    | Some n -> n
	in
	E.Label (
	  (E.Atom (sprintf "#%i:" n, atom), label),
	  node
	)
      else
	node


let to_eformat ?show_lazy ?lim x = format (dump_tree ?show_lazy ?lim x)

let to_string ?show_lazy ?lim x = 
  E.Pretty.to_string (to_eformat ?show_lazy ?lim x)
let to_stdout ?show_lazy ?lim x =
  E.Pretty.to_stdout (to_eformat ?show_lazy ?lim x)
let to_stderr ?show_lazy ?lim x =
  E.Pretty.to_stderr (to_eformat ?show_lazy ?lim x)
let to_channel ?show_lazy ?lim oc x =
  E.Pretty.to_channel oc (to_eformat ?show_lazy ?lim x)
let to_formatter ?show_lazy ?lim fmt x =
  E.Pretty.to_formatter fmt (to_eformat ?show_lazy ?lim x)
let to_buffer ?show_lazy ?lim buf x =
  E.Pretty.to_buffer buf (to_eformat ?show_lazy ?lim x)

let p = to_string