Source file treeset.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
(******************************************************************************
*                                                                             *
*                      A Tree Set implementation                              *
*                                                                             *
*       The tree will remain mostly unbalanced!                               *
*       Target is to add some 'laziness' with some functions                  *
*                                                                             *
*       Harry K W                                                             *
*                                                                             *
*******************************************************************************)

module type TSet = sig
    type t
    type 'a set
    val empty:          t set
    val add:            t -> t set -> t set
    val mem:            t -> t set -> bool
    val cardinal:       t set -> int
    val of_list:        t list -> t set
    val to_list:        t set  -> t list
    val root:           t set -> t option
    val choose:         t set -> t
    val take_min_opt:   t set -> t option * t set
    val take_min:       t set -> t * t set
    val take_max_opt:   t set -> t option * t set
    val invert:         t set-> t set
    val inorder:        t list -> t set -> t list
    val iter:           (t -> unit) -> t set -> unit
    val traverse:       (t -> 'b -> 'b) -> 'b -> t set -> 'b
    val preorder:       t list -> t set -> t list
    val iter_preorder:  (t -> unit) -> t set -> unit
    val postorder:      t list -> t set -> t list
    val iter_postorder: (t -> unit) -> t set ->  unit
    val fold:           (t -> 'b -> 'b) -> t set -> 'b -> 'b
    val remove:         t -> t set -> t set
    val union:          t set -> t set -> t set
    val is_empty:       t set -> bool
    val elements:       t set -> t list
    val filter:         (t -> bool) -> t set -> t set
    val for_all:        (t -> bool) -> t set -> bool
    val subset:         t set -> t set -> bool
    val subset_seq:     t set -> t set Seq.t
    val diff:           t set -> t set -> t set
    val to_seq:         t set -> t Seq.t
    val singleton:      t -> t set
    val min_elt_opt:    t set -> t option
    val max_elt_opt:    t set -> t option
    val of_seq:         t Seq.t -> t set
    val inter:          t set -> t set -> t set
    val exists:         (t -> bool) -> t set -> bool
    val find_first_opt: (t -> bool) -> t set -> t option
    val find_first:     (t -> bool) -> t set -> t
    val search:         (t -> int)  -> t set ->  t
end

let (let*) = Option.bind

module TreeSet(Ord: Set.OrderedType): TSet with type t := Ord.t = struct

    type 'a set =
        | Empty
        | Node of 'a set * 'a * 'a set
    ;;

    let empty = Empty

    exception Not_found

    (** [add 'a 'a set] Adds a node 'a to a given set *)
    let rec add aval = function
        | Empty -> Node(Empty, aval, Empty)
        | Node(left, v, right) ->
            let p = Ord.compare aval v in
            if p < 0 then
                Node (add aval left, v, right)
            else if p > 0 then
                Node (left, v, add aval right)
            else
                Node(left, aval, right)
    ;;

    (** [member 'a 'a set] Checks whether 'a is a member of the set *)
    let rec mem aval = function
        | Empty -> false
        | Node(left, v, right) ->
            let p = Ord.compare aval v in
            p = 0 || (if p > 0 then (mem[@tailcall]) aval right else (mem[@tailcall]) aval left)
    ;;

    (** [take_min 'a set]
      Returns a pair of some minimum element in the set and the remaining set
   *)
    let rec take_min = function
        | Empty -> raise Not_found
        | Node(Empty, v, r) -> (v, r)
        | Node(l, v, r) -> let (el, rest) = take_min l in
            (el, Node(rest, v, r))
    ;;

    (** [take_min 'a set]
      Returns a pair of some minimum element in the set and the remaining set
   *)
    let rec take_min_opt = function
        | Empty -> (None, Empty)
        | Node(Empty, v, r) -> (Some v, r)
        | Node(l, v, r) -> let (el, rest) = take_min_opt l in
            (el, Node(rest, v, r))
    ;;

    (** [choose 'a set]
      Returns a pair of some minimum element in the set
   *)
    let rec choose = function
        | Empty -> raise Not_found
        | Node(Empty, v, _r) -> v
        | Node(l, _v, _r) -> choose l
    ;;

    (** [choose 'a set]
      Returns a pair of some minimum element in the set and the remaining set
   *)
    let rec choose_rest = function
        | Empty -> raise Not_found
        | Node(Empty, v, r) -> (v, r)
        | Node(l, v, r) -> let (el, rest) =
            choose_rest l in (el, Node(rest, v, r))
    ;;

    (** [take_max 'a set]
      Returns a pair of some maximum element in the set and the remaining set
   *)
    let rec take_max_opt = function
        | Empty -> (None, Empty)
        | Node(l, v, Empty) -> (Some v, l)
        | Node(l, v, r) -> let (el, rest) = take_max_opt r in
            (el, Node(l, v, rest))
    ;;

    (** [max_elt_opt 'a set]
      Returns some maximum element in the set and the remaining set
   *)
    let rec max_elt_opt = function
        | Empty -> None
        | Node(_l, v, Empty) -> Some v
        | Node(_l, _v, r) -> max_elt_opt r
    ;;

    (** [min_elt_opt 'a set]
      Returns some maximum element in the set and the remaining set
   *)
    let rec min_elt_opt = function
        | Empty -> None
        | Node(Empty, v, _r) -> Some v
        | Node(l, _v, _r) -> min_elt_opt l
    ;;

    (** [root 'a set] Root element of the Set *)
    let root = function
        | Empty ->  None
        | Node(_, v, _) -> Some(v)
    ;;

    (** [root 'a set] Root element of the Set *)
    let take_root = function
        | Empty ->  (None, Empty)
        | Node (x, v, y) -> 
            let g = let min, rest = take_min_opt y in 
                match min with
                | Some next -> Node(x, next, rest)
                | None -> x
            in
                Some(v), g
    ;;

    (** [set_of_list 'a list] Build a Set from a list *)
    let of_list = function
        | []  -> Empty
        | rst -> List.fold_left (Fun.flip add) Empty rst
    ;;
    let of_list = of_list

    (** [set_of_seq 'a Seq] Build a Set from a lazy sequence *)
    let of_seq = Seq.fold_left (Fun.flip add) Empty;;

    (** [cardinality 'a set] number of elements in the set (recursive) *)
    let rec cardinal = function
        | Empty -> 0
        | Node(x,_,y) -> cardinal x + 1 + cardinal y
    ;; (* Sum Left and Right subtrees *)
    let cardinal = cardinal

    (** [invert 'a set] Invert the BST holding the set *)
    let rec invert = function
        | Node(x, a, y) -> Node(invert y, a, invert x)
        | e -> e
    ;;
    let invert = invert

    (** [inorder 'a set] Inorder walk on the set *)
    let rec inorder stack = function
        | Empty -> stack
        | Node (Empty, a, Empty) ->  a :: stack
        | Node (x, a, y) -> inorder (a :: (inorder stack x)) y
    ;; (* Inorder traversal - Left - Root - Right *)

    (** [to_list 'a list] Build a list from a set *)
    let to_list set = inorder [] set
    ;;

    let rec iter g = function
        | Empty -> ()
        | Node (Empty, a, Empty) ->  (g a)
        | Node (x, a, y) ->
            let _ = iter g x in
            let _ = g a in
            iter g y
    ;; (* Inorder traversal - Left - Root - Right *)

    (** [preorder 'a set] Preorder walk on the set *)
    let rec preorder stack = function
        | Empty -> stack
        | Node (Empty, a, Empty) ->  a :: stack
        | Node (x, a, y) -> preorder (preorder (a :: stack) x) y
    ;; (* Preorder traversal - Root - left - Right*)

    (** [preorder 'a set] Preorder walk on the set *)
    let rec iter_preorder g = function
        | Empty -> ()
        | Node (Empty, a, Empty) ->  (g a)
        | Node (x, a, y) -> 
            let _ = g a in
            let _ = iter_preorder g x in
            iter_preorder g y
    ;; (* Preorder traversal - Root - left - Right*)

    (** [postorder 'a set] Postorder walk on the set *)
    let rec postorder stack = function
        | Empty -> stack
        | Node (Empty, a, Empty) ->  a :: stack
        | Node (x, a, y) -> a :: (postorder (postorder stack x) y)
    ;; (* Postorder traversal Left - Right - Root *)

    (** [postorder 'a set] Postorder walk on the set *)
    let rec iter_postorder g = function
        | Empty -> ()
        | Node (Empty, a, Empty) ->  (g a)
        | Node (x, a, y) ->
            let _ = iter_postorder g x in
            let _ = iter_postorder g y in
            g a
    ;; (* Postorder traversal Left - Right - Root *)

    (*if the set is empty as in only contains `Empty*)
    let is_empty = function
        | Empty -> true
        | _ -> false
    ;;

    (** ... f set'' (fold f set' (fold f set acc)) ... *)
    let rec fold f set acc = match set with
        | Empty -> acc
        | Node (Empty, a, Empty) -> f a acc
        | Node (x, a, y) -> f a (fold f y (fold f x acc))
    ;;

    (** ... Remove an element from the set  ... *)
    let rec remove el = function
        | Empty -> Empty
        | Node (x, a, y) -> 
            let p = Ord.compare el a in
            if p = 0 then
                let min, rest = take_min_opt y in
                match min with
                | Some v -> Node(x, v, rest)
                | None -> x
            else if p > 0 then
                Node(x, a, remove el y)
            else
                Node(remove el x, a, y)
    ;;

    (** [travers 'a set] Inorder traversal on the set *)
    let rec traverse f acc = function
        | Empty -> acc
        | Node (Empty, a, Empty) ->  (f a acc)
        | Node (x, a, y) -> traverse f (traverse f (f a acc) x) y
    ;; (* Inorder traversal - Left - Root - Right *)

    (** ... set union of 2 sets  ... *)
    let union other = function
        | Empty -> other
        | self -> traverse (add) other self
    ;;

    (** ... list of elements in a set ... *)
    let elements = function
        | Empty -> []
        | self -> fold (fun elt acc -> (elt :: acc)) self [] 
    ;;

    (** ... sequence of elements in a set ... *)
    let to_seq = function
        | self ->
            let rec aux l () = match take_root l with
                | (None, _) -> Seq.Nil
                | (Some x, tail) -> Seq.Cons (x, (aux tail))
            in
                (aux self)
    ;;

    (** ... test whether f is true for_all members of this set ... *)
    let rec for_all f = function
        | Empty -> true
        | self -> 
            let (max, rest) = take_min_opt self in 
            match max with
            | Some v -> if f v then for_all f rest else false
            | _ -> true
    ;;

    (** Subset other self -> other is subset of self *)
    let subset other = function
        | Empty -> is_empty other
        | self -> for_all (Fun.flip mem self) other
    ;;

    (** Added: generate a sequence of subsets *)
    let rec subset_seq = function 
        | Empty -> Seq.return Empty 
        | rem   -> 
            let (x, rest) = take_min rem in  
            let rest' = subset_seq rest in
            let rem  =  Seq.map (fun y ->  add x y) rest' in
            Seq.append rest' rem
    ;;

    (** Filter the elements of a set *)
    let filter f = function
        | Empty -> Empty
        | self -> fold (fun elt acc -> if f elt then add elt acc else acc) self empty
    ;;

    (** set difference - filter all elements of other not in self *)
    let diff other = function
        | Empty -> other
        | self -> filter (fun x -> not (mem x self)) other
    ;;

    (** singleton *)
    let singleton v = Node(Empty, v, Empty)
    ;;

    (** set intersection *)
    let inter other = function
        | Empty -> Empty
        | self  -> filter (fun x -> mem x self) other
    ;;

    (** elt in set by function *)
    let rec exists f = function
        | Empty -> false
        | Node (l, v, r) -> (f v) || (exists f l) || (exists f r)
    ;;

    (** find first element matching predicate f *)
    let rec find_first_opt f = function
        | Empty -> None
        | nodes -> let (sel, rest) = take_min_opt nodes in
            let* el = sel in
            if f el then Some el else find_first_opt f rest
    ;;

    (** find first element matching predicate f *)
    let rec find_first f = function
        | Empty -> raise Not_found
        | nodes -> let (el, rest) = choose_rest nodes in
            if f el then el else find_first f rest
    ;;

    (* TODO: use search in place of find_first if applicable *)
    let rec search c = function
        | Empty -> raise Not_found
        | Node(left, v, right) ->
            let p = c v in
            if p = 0 then v else
            if p > 0 then (search c right) else (search c left)
    ;;

end