Source file fitc_gp.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
(* File: fitc_gp.ml

   OCaml-GPR - Gaussian Processes for OCaml

     Copyright (C) 2009-  Markus Mottl
     email: markus.mottl@gmail.com
     WWW:   http://www.ocaml.info

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public License
   along with this library; if not, write to the Free Software Foundation,
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*)

open Utils
open Interfaces

open Core
open Bigarray
open Lacaml.D

module type Sig = functor (Spec : Specs.Eval) ->
  Sigs.Eval with module Spec = Spec

(* Computations shared by FIC and FITC, and standard and variational
   version *)
module Make_common (Spec : Specs.Eval) = struct
  module Spec = Spec

  open Spec

  let jitter = !cholesky_jitter

  (* Evaluation of inducing points *)
  module Inducing = struct
    type t = {
      kernel : Kernel.t;
      points : Spec.Inducing.t;
      km : mat;
      chol_km : mat;
      log_det_km : float;
    }

    let check_n_inducing ~n_inducing inputs =
      let n_inputs = Spec.Inputs.get_n_points inputs in
      if n_inputs < 1 || n_inducing > n_inputs then
        failwithf
          "Gpr.Fitc_gp.Make_common.check_n_inducing: \
          violating 1 <= n_inducing (%d) <= n_inputs (%d)"
          n_inducing n_inputs ()

    let calc_internal kernel points km =
      let chol_km = lacpy ~uplo:`U km in
      Mat.add_const_diag jitter chol_km;
      potrf chol_km;
      { kernel; points; km; chol_km; log_det_km = log_det chol_km }

    let calc kernel points =
      calc_internal kernel points (Spec.Inducing.calc_upper kernel points)

    let choose kernel inputs indexes =
      let chosen_inputs = Spec.Inputs.choose_subset inputs indexes in
      Spec.Inputs.create_inducing kernel chosen_inputs

    let choose_n_first_inputs kernel inputs ~n_inducing =
      check_n_inducing ~n_inducing inputs;
      let indexes = Int_vec.create n_inducing in
      for i = 1 to n_inducing do indexes.{i} <- i done;
      choose kernel inputs indexes

    let choose_n_random_inputs
          ?(rnd_state = Random.State.default) kernel inputs ~n_inducing =
      check_n_inducing ~n_inducing inputs;
      let n_inputs = Spec.Inputs.get_n_points inputs in
      let indexes = Int_vec.create n_inputs in
      for i = 1 to n_inputs do indexes.{i} <- i done;
      for i = 1 to n_inducing do
        let rnd_index = Random.State.int rnd_state (n_inputs - i + 1) + 1 in
        let tmp = indexes.{rnd_index} in
        indexes.{rnd_index} <- indexes.{i};
        indexes.{i} <- tmp;
      done;
      let indexes = Array1.sub indexes 1 n_inducing in
      choose kernel inputs indexes

    let get_kernel inducing = inducing.kernel
    let get_points inducing = inducing.points
  end

  (* Evaluation of one input point *)
  module Input = struct
    type t = { inducing : Inducing.t; point : Spec.Input.t; k_m : vec }

    let calc inducing point =
      let { Inducing.kernel; points = inducing_points } = inducing in
      { inducing; point; k_m = Spec.Input.eval kernel point inducing_points }
  end

  (* Evaluation of input points *)
  module Inputs = struct
    type t = { inducing : Inducing.t; points : Inputs.t; knm : mat }

    let calc_internal points inducing knm = { inducing; points; knm }

    let calc points inducing =
      let { Inducing.kernel; points = inducing_points } = inducing in
      let knm =
        Inputs.calc_cross kernel ~inputs:points ~inducing:inducing_points
      in
      { inducing; points; knm }

    let get_kernel t = t.inducing.Inducing.kernel

    let calc_diag inputs = Inputs.calc_diag (get_kernel inputs) inputs.points
    let calc_upper inputs = Inputs.calc_upper (get_kernel inputs) inputs.points

    let create_default_kernel inputs ~n_inducing =
      Kernel.create (
        Spec.Inputs.create_default_kernel_params inputs ~n_inducing)

    let get_chol_km t = t.inducing.Inducing.chol_km
    let get_log_det_km t = t.inducing.Inducing.log_det_km
    let get_knm t = t.knm
    let get_points t = t.points
  end

  (* Model computations shared by standard and variational version *)
  module Common_model = struct
    type t = {
      sigma2 : float;
      inputs : Inputs.t;
      kn_diag : vec;
      v_mat : mat;
      r_vec : vec;
      is_vec : vec;
      sqrt_is_vec : vec;
      q_mat : mat;
      r_mat : mat;
      l1 : float;
    }

    type co_variance_coeffs = mat * mat

    let check_sigma2 sigma2 =
      if sigma2 < 0. then failwith "Model.check_sigma2: sigma2 < 0"

    let calc_internal inputs sigma2 ~kn_diag ~v_mat ~r_vec =
      check_sigma2 sigma2;
      let n = Mat.dim1 v_mat in
      let m = Mat.dim2 v_mat in
      let is_vec = Vec.create n in
      let log_det_s_vec =
        let rec loop log_det_s_vec i =
          if i = 0 then log_det_s_vec
          else
            let s_vec_i = r_vec.{i} +. sigma2 in
            let is_vec_i = 1. /. s_vec_i in
            is_vec.{i} <- is_vec_i;
            loop (log_det_s_vec +. log s_vec_i) (i - 1)
        in
        loop 0. n
      in
      let sqrt_is_vec = Vec.sqrt is_vec in
      let nm = n + m in
      let n1 = n + 1 in
      let q_mat = Mat.create (n + m) m in
      for c = 1 to m do
        for r = n1 + c to nm do q_mat.{r, c} <- 0. done;
      done;
      ignore (lacpy (Inputs.get_knm inputs) ~b:q_mat);
      Mat.scal_rows ~m:n sqrt_is_vec q_mat;
      let chol_km = Inputs.get_chol_km inputs in
      ignore (lacpy ~uplo:`U chol_km ~br:n1 ~b:q_mat);
      let tau = geqrf q_mat in
      let r_mat = lacpy ~m ~n:m ~uplo:`U q_mat in
      orgqr ~tau q_mat;
      let log_det_r =
        let rec loop log_det_r r =
          if r = 0 then log_det_r +. log_det_r
          else
            let el =
              let el = r_mat.{r, r} in
              if el > 0. then el
              else
                (* Cannot happen with LAPACK version 3.2 and greater *)
                let neg_el = -. el in
                r_mat.{r, r} <- neg_el;
                for c = r + 1 to m do r_mat.{r, c} <- -. r_mat.{r, c} done;
                Mat.scal ~m:n ~n:1 ~ac:r ~-.1. q_mat;
                neg_el
            in
            loop (log_det_r +. log el) (r - 1)
        in
        loop 0. m
      in
      let l1 =
        let log_det_km = Inputs.get_log_det_km inputs in
        -0.5 *. (log_det_r -. log_det_km +. log_det_s_vec +. float n *. log_2pi)
      in
      {
        inputs; sigma2; kn_diag; v_mat; r_vec;
        is_vec; sqrt_is_vec; q_mat; r_mat; l1;
      }

    let calc_r_vec ~kn_diag ~v_mat =
      Mat.syrk_diag ~alpha:~-.1. v_mat ~beta:1. ~y:(copy kn_diag)

    let calc_with_kn_diag inputs sigma2 kn_diag =
      let v_mat = lacpy inputs.Inputs.knm in
      trsm ~side:`R (Inputs.get_chol_km inputs) v_mat;
      let r_vec = calc_r_vec ~kn_diag ~v_mat in
      calc_internal inputs sigma2 ~kn_diag ~v_mat ~r_vec

    let calc inputs ~sigma2 =
      calc_with_kn_diag inputs sigma2 (Inputs.calc_diag inputs)

    let update_sigma2 { inputs; kn_diag; v_mat; r_vec } sigma2 =
      check_sigma2 sigma2;
      calc_internal inputs sigma2 ~kn_diag ~v_mat ~r_vec

    let calc_log_evidence model = model.l1

    let get_v_mat model = model.v_mat
    let get_inducing model = model.inputs.Inputs.inducing
    let get_inducing_points model = Inducing.get_points (get_inducing model)
    let get_inputs model = model.inputs
    let get_input_points model = model.inputs.Inputs.points
    let get_kernel model = (get_inducing model).Inducing.kernel
    let get_sigma2 model = model.sigma2
    let get_chol_km model = Inputs.get_chol_km model.inputs
    let get_r_vec model = model.r_vec
    let get_is_vec model = model.is_vec
    let get_sqrt_is_vec model = model.sqrt_is_vec
    let get_km model = (get_inducing model).Inducing.km
    let get_knm model = model.inputs.Inputs.knm
    let get_kn_diag model = model.kn_diag
    let get_q_mat model = model.q_mat
    let get_r_mat model = model.r_mat

    let calc_co_variance_coeffs model = get_chol_km model, model.r_mat
  end

  (* Model computation (variational version) *)
  module Variational_model = struct
    include Common_model

    let from_common ({ r_vec; is_vec; l1 } as model) =
      { model with l1 = l1 +. -0.5 *. dot is_vec r_vec }

    let calc_with_kn_diag inputs sigma2 kn_diag =
      from_common (calc_with_kn_diag inputs sigma2 kn_diag)

    let calc inputs ~sigma2 = from_common (calc inputs ~sigma2)
    let update_sigma2 model sigma2 = from_common (update_sigma2 model sigma2)
  end

  (* Trained models *)
  module Trained = struct
    type t = {
      model : Common_model.t;
      y : vec;
      coeffs : vec;
      l : float;
    }

    let calc_internal model ~y ~coeffs ~l2 =
      { model; y; coeffs; l = model.Common_model.l1 +. l2 }

    let prepare_internal model ~y =
      let sqrt_is_vec = model.Common_model.sqrt_is_vec in
      let n = Vec.dim sqrt_is_vec in
      let n_y = Vec.dim y in
      if n_y <> n then
        failwithf "Trained.calc: Vec.dim targets (%d) <> n (%d)" n_y n ();
      let y_ = Vec.mul y sqrt_is_vec in
      y_, gemv ~m:n ~trans:`T model.Common_model.q_mat y_

    let calc model ~targets:y =
      let y_, qt_y_ = prepare_internal model ~y in
      let l2 = -0.5 *. (Vec.sqr_nrm2 y_ -. Vec.sqr_nrm2 qt_y_) in
      trsv model.Common_model.r_mat qt_y_;
      calc_internal model ~y ~coeffs:qt_y_ ~l2

    let calc_mean_coeffs trained = trained.coeffs
    let calc_log_evidence trained = trained.l

    let calc_means trained =
      gemv (Common_model.get_knm trained.model) trained.coeffs

    let get_inducing trained = Common_model.get_inducing trained.model
    let get_targets (trained : t) = trained.y
    let get_model trained = trained.model
  end

  module Stats = struct
      type t = {
        n_samples : int;
        target_variance : float;
        sse : float;
        mse : float;
        rmse : float;
        smse : float;
        msll : float;
        mad : float;
        maxad : float;
      }

    let calc_n_samples { Trained.y } = Vec.dim y

    let calc_target_variance { Trained.y } =
      Vec.sqr_nrm2 y /. float (Vec.dim y)

    let calc_sse trained =
      let means = Trained.calc_means trained in
      Vec.ssqr_diff trained.Trained.y means

    let calc_mse trained = calc_sse trained /. float (calc_n_samples trained)
    let calc_rmse trained = sqrt (calc_mse trained)
    let calc_smse trained = calc_mse trained /. calc_target_variance trained

    let calc_prior_l target_variance =
      -0.5 *. log (2. *. pi *. target_variance) -. 0.5

    let calc_msll trained =
      let prior_l = calc_prior_l (calc_target_variance trained) in
      prior_l -. trained.Trained.l /. float (calc_n_samples trained)

    let calc_mad ({ Trained.y } as trained) =
      let n_samples = Vec.dim y in
      let f_samples = float n_samples in
      let means = Trained.calc_means trained in
      let rec loop madsum i =
        if i = 0 then madsum /. f_samples
        else loop (madsum +. Float.abs (y.{i} -. means.{i})) (i - 1)
      in
      loop 0. n_samples

    let calc_maxad ({ Trained.y } as trained) =
      let means = Trained.calc_means trained in
      let rec loop maxad i =
        if i = 0 then maxad
        else loop (max maxad (Float.abs (y.{i} -. means.{i}))) (i - 1)
      in
      loop 0. (Vec.dim y)

    let calc ({ Trained.y; l } as trained) =
      let n_samples = Vec.dim y in
      let f_samples = float n_samples in
      let target_variance = calc_target_variance trained in
      let means = Trained.calc_means trained in
      let sse = Vec.ssqr_diff y means in
      let mse = sse /. f_samples in
      let rmse = sqrt mse in
      let smse = mse /. target_variance in
      let prior_l = calc_prior_l target_variance in
      let msll = prior_l -. l /. f_samples in
      let mad, maxad =
        let rec loop ~madsum ~maxad i =
          if i = 0 then madsum /. f_samples, maxad
          else
            let ad = Float.abs (y.{i} -. means.{i}) in
            loop ~madsum:(madsum +. ad) ~maxad:(max maxad ad) (i - 1)
        in
        loop ~madsum:0. ~maxad:0. n_samples
      in
      { n_samples; target_variance; sse; mse; rmse; smse; msll; mad; maxad }
  end

  module Mean_predictor = struct
    type t = { inducing : Spec.Inducing.t; coeffs : vec }

    let calc_trained trained =
      {
        inducing = Inducing.get_points (Trained.get_inducing trained);
        coeffs = Trained.calc_mean_coeffs trained;
      }

    let calc inducing ~coeffs =
      if Spec.Inducing.get_n_points inducing <> Vec.dim coeffs then
        failwith
          "Mean_predictor.calc: number of inducing points disagrees with \
          dimension of coefficients"
      else { inducing; coeffs }

    let get_inducing t = t.inducing
    let get_coeffs t = t.coeffs
  end

  (* Prediction of mean for one input point *)
  module Mean = struct
    type t = { point : Spec.Input.t; value : float }

    let calc mean_predictor { Input.inducing = input_inducing; k_m; point } =
      if
        not (
          phys_equal
            mean_predictor.Mean_predictor.inducing
            (Inducing.get_points input_inducing))
      then
        failwith
          "Mean.calc: mean predictor and input disagree about inducing points"
      else { point; value = dot k_m mean_predictor.Mean_predictor.coeffs }

    let get mean = mean.value
  end

  (* Prediction of means for several input points *)
  module Means = struct
    type t = { points : Spec.Inputs.t; values : vec }

    let calc mean_predictor { Inputs.points; inducing; knm } =
      if
        not (
          phys_equal
            mean_predictor.Mean_predictor.inducing
            (Inducing.get_points inducing))
      then
        failwith "Means.calc: trained and inputs disagree about inducing points"
      else { points; values = gemv knm mean_predictor.Mean_predictor.coeffs }

    let get means = means.values
  end

  module Co_variance_predictor = struct
    type t = {
      kernel : Spec.Kernel.t;
      inducing : Spec.Inducing.t;
      chol_km : mat;
      r_mat : mat;
    }

    let calc_model model =
      {
        kernel = Common_model.get_kernel model;
        inducing = Inducing.get_points (Common_model.get_inducing model);
        chol_km = Common_model.get_chol_km model;
        r_mat = Common_model.get_r_mat model;
      }

    let calc kernel inducing (chol_km, r_mat) =
      { kernel; inducing; chol_km; r_mat }
  end

  (* Prediction of variance for one input point *)
  module Variance = struct
    type t = { point : Spec.Input.t; variance : float; sigma2 : float }

    let calc co_variance_predictor ~sigma2 { Input.inducing; point; k_m } =
      if
        not (
          phys_equal
            co_variance_predictor.Co_variance_predictor.inducing
            (Inducing.get_points inducing))
      then
        failwith
          "Variance.calc: \
          co-variance predictor and input disagree about inducing points"
      else
        let variance =
          let
            { Co_variance_predictor.kernel; chol_km; r_mat } =
              co_variance_predictor
          in
          let tmp = copy k_m in
          trsv ~trans:`T chol_km tmp;
          let k = Vec.sqr_nrm2 tmp in
          let tmp = copy k_m ~y:tmp in
          trsv ~trans:`T r_mat tmp;
          let b = Vec.sqr_nrm2 tmp in
          let prior_variance = Spec.Input.eval_one kernel point in
          prior_variance -. (k -. b)
        in
        { point; variance; sigma2 }

    let get ?predictive t =
      match predictive with
      | None | Some true -> t.variance +. t.sigma2
      | Some false -> t.variance
  end

  (* Prediction of variance for several input points *)
  module Variances = struct
    type t = { points : Spec.Inputs.t; variances : vec; sigma2 : float }

    let calc_model_inputs model =
      let variances =
        let tmp = lacpy (Common_model.get_knm model) in
        trsm ~side:`R model.Common_model.r_mat tmp;
        Mat.syrk_diag tmp ~beta:1. ~y:(copy (Common_model.get_r_vec model))
      in
      let sigma2 = Common_model.get_sigma2 model in
      { points = Common_model.get_input_points model; variances; sigma2 }

    let calc cvp ~sigma2 inputs =
      if
        not (
          phys_equal
            cvp.Co_variance_predictor.inducing
            (Inducing.get_points inputs.Inputs.inducing))
      then
        failwith
          "Variances.calc: \
          co-variance predictor and inputs disagree about inducing points"
      else
        let { Inputs.points; knm = ktm } = inputs in
        let variances =
          let y = Inputs.calc_diag inputs in
          let tmp = lacpy ktm in
          trsm ~side:`R cvp.Co_variance_predictor.chol_km tmp;
          let y = Mat.syrk_diag ~alpha:~-.1. tmp ~beta:1. ~y in
          let tmp = lacpy ktm ~b:tmp in
          trsm ~side:`R cvp.Co_variance_predictor.r_mat tmp;
          Mat.syrk_diag tmp ~beta:1. ~y
        in
        { points; variances; sigma2 }

    let get_common ?predictive ~variances ~sigma2 =
      match predictive with
      | None | Some true ->
          let predictive_variances = Vec.make (Vec.dim variances) sigma2 in
          axpy variances predictive_variances;
          predictive_variances
      | Some false -> variances

    let get ?predictive { variances; sigma2 } =
      get_common ?predictive ~variances ~sigma2
  end

  (* Computations for predicting covariances shared by FIC and
     FITC, and standard and variational version *)
  module Common_covariances = struct
    type t = { points : Spec.Inputs.t; covariances : mat; sigma2 : float }

    let check_inducing ~loc co_variance_predictor inputs =
      if
        not (
          phys_equal
            co_variance_predictor.Co_variance_predictor.inducing
            (Inducing.get_points inputs.Inputs.inducing))
      then
        failwithf
          "%s_covariances.calc: \
          co-variance predictor and inputs disagree about inducing points"
          loc ()

    let get_common ?predictive ~covariances ~sigma2 =
      match predictive with
      | None | Some true ->
          let res = lacpy ~uplo:`U covariances in
          for i = 1 to Mat.dim1 res do res.{i, i} <- res.{i, i} +. sigma2 done;
          res
      | Some false -> covariances

    let get ?predictive { covariances; sigma2 } =
      get_common ?predictive ~covariances ~sigma2

    let get_variances { points; covariances; sigma2 } =
      { Variances.points; variances = Mat.copy_diag covariances; sigma2 }
  end

  (* Predicting covariances with FITC (standard or variational) *)
  module FITC_covariances = struct
    include Common_covariances

    let calc_model_inputs model =
      let covariances = Inputs.calc_upper model.Common_model.inputs in
      let v_mat = model.Common_model.v_mat in
      ignore (syrk ~alpha:~-.1. v_mat ~beta:1. ~c:covariances);
      let q_mat = model.Common_model.q_mat in
      let n = Mat.dim1 v_mat in
      ignore (syrk ~n q_mat ~beta:1. ~c:covariances);
      let points = Common_model.get_input_points model in
      let sigma2 = Common_model.get_sigma2 model in
      { points; covariances; sigma2 }

    let calc co_variance_predictor ~sigma2 inputs =
      check_inducing ~loc:"FITC" co_variance_predictor inputs;
      let { Co_variance_predictor.chol_km; r_mat } = co_variance_predictor in
      let covariances = Inputs.calc_upper inputs in
      let { Inputs.points; knm = ktm } = inputs in
      let covariances =
        let tmp = lacpy ktm in
        trsm ~side:`R chol_km tmp;
        ignore (syrk ~alpha:~-.1. tmp ~c:covariances);
        let tmp = lacpy ktm ~b:tmp in
        trsm ~side:`R r_mat tmp;
        syrk tmp ~c:covariances;
      in
      { points; covariances; sigma2 }
  end

  (* Predicting covariances with FIC (standard or variational) *)
  module FIC_covariances = struct
    include Common_covariances

    let calc_common ~points ~sigma2 ~q_mat ~r_vec =
      let n = Vec.dim r_vec in
      let covariances = syrk ~n q_mat in
      for i = 1 to n do
        covariances.{i, i} <- covariances.{i, i} +. r_vec.{i}
      done;
      { points; covariances; sigma2 }

    let calc_model_inputs model =
      let r_vec = model.Common_model.r_vec in
      let q_mat = model.Common_model.q_mat in
      let points = Common_model.get_input_points model in
      let sigma2 = Common_model.get_sigma2 model in
      calc_common ~points ~sigma2 ~q_mat ~r_vec

    let calc co_variance_predictor ~sigma2 ({ Inputs.knm = ktm } as inputs) =
      check_inducing ~loc:"FIC" co_variance_predictor inputs;
      let kt_diag = Inputs.calc_diag inputs in
      let r_vec = Mat.syrk_diag ~alpha:~-.1. ktm ~beta:1. ~y:kt_diag in
      let q_mat = lacpy ktm in
      let r_mat = co_variance_predictor.Co_variance_predictor.r_mat in
      trsm ~side:`R r_mat q_mat;
      let points = Inputs.get_points inputs in
      calc_common ~points ~sigma2 ~q_mat ~r_vec
  end

  (* Computations for sampling the marginal posterior GP distribution
     shared by standard and variational version *)
  module Common_sampler = struct
    type t = { mean : float; stddev : float }

    let calc ~loc ?predictive mean variance =
      if not (phys_equal mean.Mean.point variance.Variance.point) then
        failwith (
          loc ^ ".Sampler: mean and variance disagree about input point");
      let used_variance =
        match predictive with
        | None | Some true ->
            variance.Variance.variance +. variance.Variance.sigma2
        | Some false -> variance.Variance.variance
      in
      { mean = mean.Mean.value; stddev = sqrt used_variance }

    let sample ?(rng = default_rng) sampler =
      let noise = Gsl.Randist.gaussian_ziggurat rng ~sigma:sampler.stddev in
      sampler.mean +. noise

    let samples ?(rng = default_rng) sampler ~n =
      Vec.init n (fun _ -> sample ~rng sampler)
  end

  (* Computations for sampling the posterior GP distribution shared
     by FIC and FITC, and standard and variational version *)
  module Common_cov_sampler = struct
    type t = { means : vec; cov_chol : mat }

    let calc ~loc ?predictive means covariances =
      let module Covariances = Common_covariances in
      if not (phys_equal means.Means.points covariances.Covariances.points) then
        failwith (
          loc ^
          ".Cov_sampler: means and covariances disagree about input points");
      let cov_chol = lacpy ~uplo:`U covariances.Covariances.covariances in
      begin
        match predictive with
        | None | Some true ->
            let sigma2 = covariances.Covariances.sigma2 in
            for i = 1 to Mat.dim1 cov_chol do
              cov_chol.{i, i} <- cov_chol.{i, i} +. sigma2
            done
        | Some false -> ()
      end;
      Mat.add_const_diag jitter cov_chol;
      potrf cov_chol;
      { means = means.Means.values; cov_chol }

    let sample ?(rng = default_rng) samplers =
      let n = Vec.dim samplers.means in
      let sample =
        Vec.init n (fun _ -> Gsl.Randist.gaussian_ziggurat rng ~sigma:1.)
      in
      trmv ~trans:`T samplers.cov_chol sample;
      axpy samplers.means sample;
      sample

    let samples ?(rng = default_rng) { means; cov_chol } ~n =
      let n_means = Vec.dim means in
      let samples =
        Mat.init_cols n_means n (fun _ _ ->
          Gsl.Randist.gaussian_ziggurat rng ~sigma:1.)
      in
      trmm ~transa:`T cov_chol samples;
      for col = 1 to n do
        for row = 1 to n_means do
          samples.{row, col} <- samples.{row, col} +. means.{row}
        done
      done;
      samples
  end
end

let fitc_loc = "FITC"
let fic_loc = "FIC"
let variational_fitc_loc = "Variational_FITC"
let variational_fic_loc = "Variational_FIC"

module Make_FITC (Spec : Specs.Eval) = struct
  include Make_common (Spec)

  module Model = Common_model
  module Covariances = FITC_covariances

  module Sampler = struct
    include Common_sampler
    let calc = calc ~loc:fitc_loc
  end

  module Cov_sampler = struct
    include Common_cov_sampler
    let calc = calc ~loc:fitc_loc
  end
end

module Make_FIC (Spec : Specs.Eval) = struct
  include Make_common (Spec)

  module Model = Common_model
  module Covariances = FIC_covariances

  module Sampler = struct
    include Common_sampler
    let calc = calc ~loc:fic_loc
  end

  module Cov_sampler = struct
    include Common_cov_sampler
    let calc = calc ~loc:fic_loc
  end
end

module Make_variational_FITC (Spec : Specs.Eval) = struct
  include Make_common (Spec)

  module Model = Variational_model
  module Covariances = FITC_covariances

  module Sampler = struct
    include Common_sampler
    let calc = calc ~loc:variational_fitc_loc
  end

  module Cov_sampler = struct
    include Common_cov_sampler
    let calc = calc ~loc:variational_fitc_loc
  end
end

module Make_variational_FIC (Spec : Specs.Eval) = struct
  include Make_common (Spec)

  module Model = Variational_model
  module Covariances = FIC_covariances

  module Sampler = struct
    include Common_sampler
    let calc = calc ~loc:variational_fic_loc
  end

  module Cov_sampler = struct
    include Common_cov_sampler
    let calc = calc ~loc:variational_fic_loc
  end
end

module Make (Spec : Specs.Eval) = struct
  module type Sig = Sigs.Eval with module Spec = Spec

  module Common = Make_common (Spec)

  module FITC = struct
    include Common
    module Model = Common_model
    module Covariances = FITC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:fitc_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:fitc_loc
    end
  end

  module FIC = struct
    include Common
    module Model = Common_model
    module Covariances = FIC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:fic_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:fic_loc
    end
  end

  module Variational_FITC = struct
    include Common
    module Model = Variational_model
    module Covariances = FITC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:variational_fitc_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:variational_fitc_loc
    end
  end

  module Variational_FIC = struct
    include Common
    module Model = Variational_model
    module Covariances = FIC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:variational_fic_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:variational_fic_loc
    end
  end
end


(* Handling derivatives *)

module type Deriv_sig = functor (Spec : Specs.Deriv) ->
  Sigs.Deriv
    with module Eval.Spec = Spec.Eval
    with module Deriv.Spec = Spec

(* Computations shared by FIC and FITC, and standard and variational
   version for derivatives *)
module Make_common_deriv (Spec : Specs.Deriv) = struct
  (* Eval modules *)

  module Eval_common = Make_common (Spec.Eval)
  module Eval_inducing = Eval_common.Inducing
  module Eval_inputs = Eval_common.Inputs
  module Eval_model = Eval_common.Common_model
  module Eval_trained = Eval_common.Trained

  (* Kind of model *)
  type model_kind = Standard | Variational

  module Deriv_common = struct

    (* Derivative modules *)

    module Spec = Spec

    (* Derivative of inducing points *)
    module Inducing = struct
      type t = { eval : Eval_inducing.t; shared_upper : Spec.Inducing.upper }

      let calc kernel eval_inducing =
        let km, shared_upper =
          Spec.Inducing.calc_shared_upper kernel eval_inducing
        in
        {
          eval = Eval_inducing.calc_internal kernel eval_inducing km;
          shared_upper;
        }

      let calc_eval inducing = inducing.eval
      let get_kernel inducing = Eval_inducing.get_kernel inducing.eval
    end

    (* Derivative of inputs *)
    module Inputs = struct
      type t = {
        inducing : Inducing.t;
        eval : Eval_inputs.t;
        shared_cross : Spec.Inputs.cross;
      }

      let calc inducing points =
        let kernel = Inducing.get_kernel inducing in
        let knm, shared_cross =
          Spec.Inputs.calc_shared_cross kernel
            ~inputs:points ~inducing:inducing.Inducing.eval.Eval_inducing.points
        in
        let eval =
          Eval_inputs.calc_internal points inducing.Inducing.eval knm
        in
        { inducing; eval; shared_cross }

      let calc_eval t = t.eval

      let get_kernel inputs = Inducing.get_kernel inputs.inducing
    end

    (* Derivative of hyper parameters *)
    module Shared = struct
      type shared = {
        km : mat;
        knm : mat;
        kn_diag : vec;
        shared_upper : Spec.Inducing.upper;
        shared_cross : Spec.Inputs.cross;
        shared_diag : Spec.Inputs.diag;
      }

      type dfacts = { v_vec : vec; w_mat : mat; x_mat : mat }
      type hyper_t = { shared : shared; dfacts : dfacts }

      let calc_us_mat eval_model =
        let u_mat = lacpy (Eval_model.get_v_mat eval_model) in
        trsm ~side:`R ~transa:`T (Eval_model.get_chol_km eval_model) u_mat;
        let n = Mat.dim1 u_mat in
        let q_mat = Eval_model.get_q_mat eval_model in
        let s_mat = lacpy ~m:n q_mat in
        trsm ~side:`R ~transa:`T eval_model.Eval_model.r_mat s_mat;
        Mat.scal_rows (Eval_model.get_sqrt_is_vec eval_model) s_mat;
        u_mat, s_mat

      let update_tmp tmp v = tmp.x <- tmp.x +. v

      let calc_dkn_diag_term ~v_vec ~kn_diag = function
        | `Vec dkn_diag -> dot v_vec dkn_diag
        | `Sparse_vec (svec, rows) ->
            check_sparse_vec_sane ~real_n:(Vec.dim v_vec) ~svec ~rows;
            let tmp = { x = 0. } in
            for i = 1 to Vec.dim svec do
              update_tmp tmp (v_vec.{rows.{i}} *. svec.{i})
            done;
            tmp.x
        | `Const 0. | `Factor 0. -> 0.
        | `Const c -> c *. Vec.sum v_vec
        | `Factor c -> c *. dot kn_diag v_vec

      let calc_dkm_term ~w_mat ~km = function
        | `Dense dkm -> Mat.symm2_trace w_mat dkm
        | `Sparse_rows (smat, rows) -> symm2_sparse_trace ~mat:w_mat ~smat ~rows
        | `Const 0. | `Factor 0. | `Diag_const 0. -> 0.
        | `Const c -> c *. sum_symm_mat w_mat
        | `Factor c -> c *. Mat.symm2_trace w_mat km
        | `Diag_vec ddkm ->
            let tmp = { x = 0. } in
            for i = 1 to Mat.dim1 w_mat do
              update_tmp tmp (ddkm.{i} *. w_mat.{i, i})
            done;
            tmp.x
        | `Diag_const c ->
            let tmp = { x = 0. } in
            for i = 1 to Mat.dim1 w_mat do
              update_tmp tmp (c *. w_mat.{i, i})
            done;
            tmp.x

      let calc_dknm_term ~x_mat ~knm = function
        | `Dense dknm -> Mat.gemm_trace ~transa:`T x_mat dknm
        | `Sparse_cols (sdknm, cols) ->
            let real_n = Mat.dim2 x_mat in
            check_sparse_col_mat_sane ~real_n ~smat:sdknm ~cols;
            let m = Mat.dim1 sdknm in
            let tmp = { x = 0. } in
            for c = 1 to Int_vec.dim cols do
              let real_c = cols.{c} in
              for r = 1 to m do
                update_tmp tmp (x_mat.{r, real_c} *. sdknm.{r, c})
              done
            done;
            tmp.x
        | `Const 0. | `Factor 0. -> 0.
        | `Const c -> c *. sum_mat x_mat
        | `Factor c -> c *. Mat.gemm_trace ~transa:`T x_mat knm
        | `Sparse_rows (sdknm, rows) ->
            let real_m = Mat.dim1 x_mat in
            check_sparse_row_mat_sane ~real_m ~smat:sdknm ~rows;
            let n = Mat.dim2 sdknm in
            let tmp = { x = 0. } in
            for r = 1 to Int_vec.dim rows do
              let real_r = rows.{r} in
              for c = 1 to n do
                update_tmp tmp (x_mat.{real_r, c} *. sdknm.{r, c})
              done
            done;
            tmp.x

      let calc_log_evidence { shared; dfacts = { v_vec; w_mat; x_mat } } hyper =
        let dkn_diag_term =
          let kn_diag = shared.kn_diag in
          let dkn_diag = Spec.Inputs.calc_deriv_diag shared.shared_diag hyper in
          calc_dkn_diag_term ~v_vec ~kn_diag dkn_diag
        in
        let dkm_term =
          let km = shared.km in
          let dkm = Spec.Inducing.calc_deriv_upper shared.shared_upper hyper in
          calc_dkm_term ~w_mat ~km dkm
        in
        let dknm_term =
          let knm = shared.knm in
          let dknm = Spec.Inputs.calc_deriv_cross shared.shared_cross hyper in
          calc_dknm_term ~x_mat ~knm dknm
        in
        -0.5 *. (dkn_diag_term -. dkm_term) -. dknm_term
    end

    (* Derivative of models *)
    module Common_model = struct

      (* Precomputations for all derivatives *)

      type t = {
        model_kind : model_kind;
        model_shared : Shared.shared;
        eval_model : Eval_model.t;
        inv_km : mat;
        q_diag : vec;
        t_mat : mat;
      }

      let calc_internal model_kind model_shared eval_model inv_km =
        let q_mat = Eval_model.get_q_mat eval_model in
        let n = Mat.dim1 q_mat - Mat.dim2 q_mat in
        let t_mat = lacpy ~uplo:`U inv_km in
        Mat.axpy ~alpha:~-.1. (ichol eval_model.Eval_model.r_mat) t_mat;
        {
          model_kind; model_shared; eval_model; inv_km; t_mat;
          q_diag = Mat.syrk_diag ~n q_mat
        }

      let calc_common model_kind inputs sigma2 =
        let kernel = Inputs.get_kernel inputs in
        let eval_inputs = inputs.Inputs.eval in
        let kn_diag, shared_diag =
          Spec.Inputs.calc_shared_diag kernel eval_inputs.Eval_inputs.points
        in
        let calc_with_kn_diag =
          match model_kind with
          | Standard -> Eval_model.calc_with_kn_diag
          | Variational -> Eval_common.Variational_model.calc_with_kn_diag
        in
        let eval_model = calc_with_kn_diag eval_inputs sigma2 kn_diag in
        let km = Eval_model.get_km eval_model in
        let knm = Eval_model.get_knm eval_model in
        let kn_diag = Eval_model.get_kn_diag eval_model in
        let chol_km = Eval_model.get_chol_km eval_model in
        let inv_km = ichol chol_km in
        let model_shared =
          {
            Shared.
            km; knm; kn_diag; shared_diag;
            shared_upper = inputs.Inputs.inducing.Inducing.shared_upper;
            shared_cross = inputs.Inputs.shared_cross;
          }
        in
        calc_internal model_kind model_shared eval_model inv_km

      let calc_eval model = model.eval_model
      let calc inputs ~sigma2 = calc_common Standard inputs sigma2

      let update_sigma2 ({ model_kind } as model) sigma2 =
        let update_sigma2 =
          match model_kind with
          | Standard -> Eval_model.update_sigma2
          | Variational -> Eval_common.Variational_model.update_sigma2
        in
        let eval_model = update_sigma2 model.eval_model sigma2 in
        calc_internal model_kind model.model_shared eval_model model.inv_km

      let calc_v1_vec { q_diag; eval_model; model_kind } =
        let is_vec = Eval_model.get_is_vec eval_model in
        let n = Vec.dim is_vec in
        let v1_vec = Vec.create n in
        match model_kind with
        | Standard ->
            for i = 1 to n do v1_vec.{i} <- is_vec.{i} *. (1. -. q_diag.{i}) done;
            v1_vec
        | Variational ->
            let r_vec = Eval_model.get_r_vec eval_model in
            for i = 1 to n do
              v1_vec.{i} <-
                is_vec.{i} *. (2. -. is_vec.{i} *. r_vec.{i} -. q_diag.{i})
            done;
            v1_vec

      (* Derivative of sigma2 *)

      let common_calc_log_evidence_sigma2 { eval_model; model_kind } v_vec =
        let sum_v_vec = Vec.sum v_vec in
        let sum =
          match model_kind with
          | Standard -> sum_v_vec
          | Variational -> sum_v_vec -. Vec.sum eval_model.Eval_model.is_vec
        in
        -0.5 *. sum

      let calc_log_evidence_sigma2 model =
        common_calc_log_evidence_sigma2 model (calc_v1_vec model)

      (* Prepare derivative of general hyper-parameters *)

      let prepare_hyper ({ eval_model; t_mat; model_shared } as model) =
        let v_vec = calc_v1_vec model in
        let sqrt_v_vec = Vec.sqrt v_vec in
        let u_mat, x_mat = Shared.calc_us_mat eval_model in
        Mat.scal_rows sqrt_v_vec u_mat;
        let c = lacpy ~uplo:`U t_mat in
        let w_mat = syrk ~trans:`T ~alpha:~-.1. u_mat ~beta:1. ~c in
        Mat.scal_rows sqrt_v_vec u_mat;
        Mat.axpy ~alpha:~-.1. u_mat x_mat;
        let dfacts = { Shared.v_vec; w_mat; x_mat } in
        { Shared.shared = model_shared; dfacts }

      include Shared
    end

    module Cm = Common_model

    module Variational_model = struct
      include Cm

      let calc inputs ~sigma2 = calc_common Variational inputs sigma2
    end

    (* Derivative of trained models *)
    module Trained = struct
      type t = {
        common_model : Cm.t;
        eval_trained : Eval_trained.t;
        w_vec : vec;
        v_vec : vec;
      }

      let calc common_model ~targets:y =
        let eval_model = common_model.Cm.eval_model in
        let y_, qt_y_ = Eval_trained.prepare_internal eval_model ~y in
        let u_vec = copy y_ in
        let n = Vec.dim y_ in
        let q_mat = Eval_model.get_q_mat eval_model in
        ignore (gemv ~m:n ~alpha:~-.1. q_mat qt_y_ ~beta:1. ~y:u_vec);
        let l2 = -0.5 *. dot u_vec y_ in
        let coeffs = qt_y_ in
        trsv eval_model.Eval_model.r_mat coeffs;
        let w_vec = u_vec in
        let sqrt_is_vec = Eval_model.get_sqrt_is_vec eval_model in
        for i = 1 to n do w_vec.{i} <- w_vec.{i} *. sqrt_is_vec.{i} done;
        let v2_vec = Vec.sqr w_vec in
        let v_vec = Cm.calc_v1_vec common_model in
        axpy ~alpha:~-.1. v2_vec v_vec;
        {
          common_model; w_vec; v_vec;
          eval_trained = Eval_trained.calc_internal eval_model ~y ~coeffs ~l2
        }

      let calc_eval trained = trained.eval_trained

      (* Derivative of sigma2 *)

      let calc_log_evidence_sigma2 { common_model; v_vec } =
        Cm.common_calc_log_evidence_sigma2 common_model v_vec

      (* Derivative of general hyper-parameters *)

      let prepare_hyper { common_model; eval_trained; w_vec; v_vec } =
        let { Cm.eval_model; t_mat; model_shared = shared } = common_model in
        let u_mat, x_mat = Shared.calc_us_mat eval_model in
        let t_vec = eval_trained.Eval_trained.coeffs in
        let w_mat =lacpy ~uplo:`U t_mat in
        syr ~alpha:~-.1. t_vec w_mat;
        let u1_mat = lacpy u_mat in
        Mat.scal_rows (Vec.sqrt (Cm.calc_v1_vec common_model)) u1_mat;
        let w_mat = syrk ~trans:`T ~alpha:~-.1. u1_mat ~beta:1. ~c:w_mat in
        let u2_mat = lacpy u_mat ~b:u1_mat in
        Mat.scal_rows w_vec u2_mat;
        ignore (syrk ~trans:`T u2_mat ~beta:1. ~c:w_mat);
        Mat.scal_rows v_vec u_mat;
        Mat.axpy ~alpha:~-.1. u_mat x_mat;
        ger ~alpha:~-.1. w_vec t_vec x_mat;
        { Shared.shared; dfacts = { Shared.v_vec; w_mat; x_mat } }

      include Shared
    end

    module Test = struct
      let update_hyper kernel inducing_points points hyper ~eps =
        let value = Spec.Hyper.get_value kernel inducing_points points hyper in
        let value_eps = value +. eps in
        Spec.Hyper.set_values kernel inducing_points points
          [| hyper |] (Vec.make 1 value_eps)

      let is_bad_deriv ~finite_el ~deriv ~tol =
        Float.is_nan finite_el
          || Float.is_nan deriv
          || Float.abs (finite_el -. deriv) > tol

      let check_deriv_hyper ?(eps = 1e-8) ?(tol = 1e-2)
            kernel1 inducing_points1 points1 hyper =
        let kernel2, inducing_points2, points2 =
          update_hyper kernel1 inducing_points1 points1 hyper ~eps
        in
        let eval_inducing1 = Eval_inducing.calc kernel1 inducing_points1 in
        let eval_cross1 = Eval_inputs.calc points1 eval_inducing1 in
        let eval_inducing2 = Eval_inducing.calc kernel2 inducing_points2 in
        let eval_cross2 = Eval_inputs.calc points2 eval_inducing2 in
        let make_finite ~mat1 ~mat2 =
          let res = lacpy mat2 in
          Mat.axpy ~alpha:~-.1. mat1 res;
          Mat.scal (1. /. eps) res;
          res
        in
        let km1 = eval_inducing1.Eval_inducing.km in
        let finite_dkm =
          make_finite ~mat1:km1 ~mat2:eval_inducing2.Eval_inducing.km
        in
        let inducing1 = Inducing.calc kernel1 inducing_points1 in
        let check_mat ~name ~deriv ~finite ~r ~c =
          let finite_el = finite.{r, c} in
          if is_bad_deriv ~finite_el ~deriv ~tol then
            failwithf
              "Gpr.Fitc_gp.Make_deriv.Test.check_deriv_hyper: \
              finite difference (%f) and derivative (%f) differ \
              by more than %f on %s.{%d, %d}" finite_el deriv tol name r c ()
        in
        (* Check dkm *)
        begin
          let check = check_mat ~name:"dkm" ~finite:finite_dkm in
          match
            Spec.Inducing.calc_deriv_upper inducing1.Inducing.shared_upper hyper
          with
          | `Dense dkm ->
              let m = Mat.dim1 dkm in
              for c = 1 to m do
                for r = 1 to c do check ~deriv:dkm.{r, c} ~r ~c done
              done
          | `Sparse_rows (sdkm, rows) ->
              let m = Int_vec.dim rows in
              let n = Mat.dim2 sdkm in
              let rows_ix_ref = ref 1 in
              for sparse_r = 1 to m do
                let c = rows.{sparse_r} in
                for r = 1 to n do
                  let mat_r, mat_c = if r > c then c, r else r, c in
                  let rows_ix = !rows_ix_ref in
                  let deriv =
                    if
                      rows_ix > m ||
                      let rows_el = rows.{rows_ix} in
                      r < rows_el || c < rows_el
                    then sdkm.{sparse_r, r}
                    else begin
                      incr rows_ix_ref;
                      sdkm.{rows_ix, c}
                    end
                  in
                  check ~deriv ~r:mat_r ~c:mat_c
                done;
                rows_ix_ref := 1
              done
          | `Const const ->
              let m = Mat.dim1 km1 in
              for c = 1 to m do
                for r = 1 to c do check ~deriv:const ~r ~c done
              done
          | `Factor const ->
              let m = Mat.dim1 km1 in
              for c = 1 to m do
                for r = 1 to c do check ~deriv:(const *. km1.{r, c}) ~r ~c done
              done
          | `Diag_vec diag ->
              let m = Mat.dim1 km1 in
              for c = 1 to m do check ~deriv:diag.{c} ~r:c ~c done
          | `Diag_const const ->
              let m = Mat.dim1 km1 in
              for c = 1 to m do check ~deriv:const ~r:c ~c done
        end;
        (* Check dknm *)
        let inputs = Inputs.calc inducing1 points1 in
        begin
          let knm1 = eval_cross1.Eval_inputs.knm in
          let finite_dknm =
            make_finite ~mat1:knm1 ~mat2:eval_cross2.Eval_inputs.knm
          in
          let check = check_mat ~name:"dknm" ~finite:finite_dknm in
          match
            Spec.Inputs.calc_deriv_cross inputs.Inputs.shared_cross hyper
          with
          | `Dense dknm ->
              let m = Mat.dim1 knm1 in
              for c = 1 to Mat.dim2 knm1 do
                for r = 1 to m do check ~deriv:dknm.{r, c} ~r ~c done
              done
          | `Sparse_cols (sdknm, cols) ->
              let m = Mat.dim1 sdknm in
              for c = 1 to Int_vec.dim cols do
                let real_c = cols.{c} in
                for r = 1 to m do check ~deriv:sdknm.{r, c} ~r ~c:real_c done
              done
          | `Const const ->
              let m = Mat.dim1 knm1 in
              for c = 1 to Mat.dim2 knm1 do
                for r = 1 to m do check ~deriv:const ~r ~c done
              done
          | `Factor const ->
              let m = Mat.dim1 knm1 in
              for c = 1 to Mat.dim2 knm1 do
                for r = 1 to m do check ~deriv:(const *. knm1.{r, c}) ~r ~c done
              done
          | `Sparse_rows (sdknm, rows) ->
              let n = Mat.dim2 sdknm in
              for r = 1 to Int_vec.dim rows do
                let real_r = rows.{r} in
                for c = 1 to n do check ~deriv:sdknm.{r, c} ~r:real_r ~c done
              done
        end;
        (* Check dkn diag *)
        begin
          let kn_diag1, shared_diag =
            Spec.Inputs.calc_shared_diag kernel1 points1
          in
          let kn_diag2 = Spec.Eval.Inputs.calc_diag kernel2 points2 in
          let finite_dkn_diag =
            let res = copy kn_diag2 in
            axpy ~alpha:~-.1. kn_diag1 res;
            scal (1. /. eps) res;
            res
          in
          let check ~deriv ~r =
            let finite_el = finite_dkn_diag.{r} in
            if is_bad_deriv ~finite_el ~deriv ~tol then
              failwithf
                "Gpr.Fitc_gp.Make_deriv.Test.check_deriv_hyper: \
                finite difference (%f) and derivative (%f) differ \
                by more than %f on dkn_diag.{%d}" finite_el deriv tol r ()
          in
          match Spec.Inputs.calc_deriv_diag shared_diag hyper with
          | `Vec dkn_diag ->
              for r = 1 to Vec.dim dkn_diag do check ~deriv:dkn_diag.{r} ~r done
          | `Sparse_vec (sdkn_diag, cols) ->
              let n = Int_vec.dim cols in
              for r = 1 to n do check ~deriv:sdkn_diag.{r} ~r:cols.{r} done
          | `Const const ->
              for r = 1 to Vec.dim kn_diag1 do check ~deriv:const ~r done
          | `Factor const ->
              for r = 1 to Vec.dim kn_diag1 do
                check ~deriv:(const *. kn_diag1.{r}) ~r
              done
        end

      let self_test ?(eps = 1e-8) ?(tol = 1e-2)
            kernel1 inducing_points1 points1 ~sigma2 ~targets hyper =
        let inducing1 = Inducing.calc kernel1 inducing_points1 in
        let inputs1 = Inputs.calc inducing1 points1 in
        let deriv_model = Cm.calc inputs1 ~sigma2 in
        let eval_model1 = Cm.calc_eval deriv_model in
        let model_log_evidence1 = Eval_model.calc_log_evidence eval_model1 in
        let deriv_trained = Trained.calc deriv_model ~targets in
        let eval_trained1 = Trained.calc_eval deriv_trained in
        let trained_log_evidence1 =
          Eval_trained.calc_log_evidence eval_trained1
        in
        let check ~name ~before ~after ~deriv =
          let finite_el = (after -. before) /. eps in
          if is_bad_deriv ~finite_el ~deriv ~tol then
            failwithf
              "Gpr.Fitc_gp.Make_deriv.Test.self_test: \
              finite difference (%f) and derivative (%f) differ \
              by more than %f on %s" finite_el deriv tol name ()
        in
        match hyper with
        | `Sigma2 ->
            let eval_model2 =
              let sigma2 = sigma2 +. eps in
              Eval_model.calc inputs1.Inputs.eval ~sigma2
            in
            let model_log_evidence2 =
              Eval_model.calc_log_evidence eval_model2
            in
            let model_deriv = Cm.calc_log_evidence_sigma2 deriv_model in
            check ~name:"sigma2(model)"
              ~before:model_log_evidence1 ~after:model_log_evidence2
              ~deriv:model_deriv;
            let eval_trained2 = Eval_trained.calc eval_model2 ~targets in
            let trained_log_evidence2 =
              Eval_trained.calc_log_evidence eval_trained2
            in
            let trained_deriv = Trained.calc_log_evidence_sigma2 deriv_trained in
            check ~name:"sigma2(trained)"
              ~before:trained_log_evidence1 ~after:trained_log_evidence2
              ~deriv:trained_deriv
        | `Hyper hyper ->
            let kernel2, inducing_points2, points2 =
              update_hyper kernel1 inducing_points1 points1 hyper ~eps
            in
            let eval_inducing2 = Eval_inducing.calc kernel2 inducing_points2 in
            let eval_inputs2 = Eval_inputs.calc points2 eval_inducing2 in
            let eval_model2 = Eval_model.calc eval_inputs2 ~sigma2 in
            let model_log_evidence2 =
              Eval_model.calc_log_evidence eval_model2
            in
            let model_hyper_t = Cm.prepare_hyper deriv_model in
            let model_deriv = Cm.calc_log_evidence model_hyper_t hyper in
            check ~name:"hyper(model)"
              ~before:model_log_evidence1 ~after:model_log_evidence2
              ~deriv:model_deriv;
            let eval_trained2 = Eval_trained.calc eval_model2 ~targets in
            let trained_log_evidence2 =
              Eval_trained.calc_log_evidence eval_trained2
            in
            let trained_hyper_t = Trained.prepare_hyper deriv_trained in
            let trained_deriv = Trained.calc_log_evidence trained_hyper_t hyper in
            check ~name:"hyper(trained)"
              ~before:trained_log_evidence1 ~after:trained_log_evidence2
              ~deriv:trained_deriv
    end

    (* Hyper parameter optimization by evidence maximization
       (type II maximum likelihood) *)
    module Optim = struct
      let get_sigma2 targets = function
        | None -> Vec.sqr_nrm2 targets /. float (Vec.dim targets)
        | Some sigma2 when sigma2 < 0. ->
            failwithf "Optim.get_sigma2: sigma2 < 0: %f" sigma2 ()
        | Some sigma2 -> sigma2

      let get_kernel_inducing ?kernel ?n_rand_inducing ~inputs = function
        | None ->
            let n_inducing =
              let n_inputs = Spec.Eval.Inputs.get_n_points inputs in
              match n_rand_inducing with
              | None -> min (n_inputs / 10) 1000
              | Some n_rand_inducing ->
                  if n_rand_inducing < 1 then
                    failwithf
                      "Gpr.Fitc_gp.Optim.get_kernel_inducing: \
                      n_rand_inducing (%d) < 1" n_rand_inducing ()
                  else if n_rand_inducing > n_inputs then
                    failwithf
                      "Gpr.Fitc_gp.Optim.get_kernel_inducing: \
                      n_rand_inducing (%d) > n_inputs (%d)"
                      n_rand_inducing n_inputs ()
                  else n_rand_inducing
            in
            let kernel =
              match kernel with
              | None -> Eval_inputs.create_default_kernel ~n_inducing inputs
              | Some kernel -> kernel
            in
            (
              kernel,
              Eval_inducing.choose_n_random_inputs kernel ~n_inducing inputs
            )
        | Some inducing ->
            match kernel with
            | None ->
                let n_inducing = Spec.Eval.Inducing.get_n_points inducing in
                (
                  Eval_inputs.create_default_kernel ~n_inducing inputs,
                  inducing
                )
            | Some kernel -> kernel, inducing

      let get_hypers_vals kernel inducing points hypers =
        let hypers =
          match hypers with
          | None -> Spec.Hyper.get_all kernel inducing points
          | Some hypers -> hypers
        in
        let n_hypers = Array.length hypers in
        let hyper_vals =
          Vec.init n_hypers (fun i1 ->
            Spec.Hyper.get_value kernel inducing points hypers.(i1 - 1))
        in
        hypers, hyper_vals

      module Gsl = struct
        exception Optim_exception of exn

        let check_exception seen_exception_ref res =
          if Float.classify res = Float.Class.Nan then
            match !seen_exception_ref with
            | None ->
                failwith "Gpr.Optim.Gsl: optimization function returned nan"
            | Some exc -> raise (Optim_exception exc)

        let ignore_report ~iter:_ _ = ()

        let train
              ?(step = 1e-1) ?(tol = 1e-1) ?(epsabs = 1e-1)
              ?(report_trained_model = ignore_report)
              ?(report_gradient_norm = ignore_report)
              ?kernel ?sigma2 ?inducing ?n_rand_inducing
              ?(learn_sigma2 = true) ?hypers ~inputs ~targets () =
          let sigma2 = get_sigma2 targets sigma2 in
          let kernel, inducing =
            get_kernel_inducing ?kernel ?n_rand_inducing ~inputs inducing
          in
          let hypers, hyper_vals =
            get_hypers_vals kernel inducing inputs hypers
          in
          let n_hypers = Array.length hypers in
          let n_gsl_hypers, gsl_hypers =
            if learn_sigma2 then
              let n_gsl_hypers = 1 + n_hypers in
              let gsl_hypers = Gsl.Vector.create n_gsl_hypers in
              gsl_hypers.{0} <- log sigma2;
              for i = 1 to n_hypers do gsl_hypers.{i} <- hyper_vals.{i} done;
              n_gsl_hypers, gsl_hypers
            else
              let gsl_hypers = Gsl.Vector.create n_hypers in
              for i = 1 to n_hypers do
                gsl_hypers.{i - 1} <- hyper_vals.{i}
              done;
              n_hypers, gsl_hypers
           in
          let module Gd = Gsl.Multimin.Deriv in
          let sigma2_ref = ref sigma2 in
          let update_hypers =
            if learn_sigma2 then
              (fun ~gsl_hypers ->
                sigma2_ref := exp gsl_hypers.{0};
                let hyper_vals = Vec.create n_hypers in
                for i = 1 to n_hypers do hyper_vals.{i} <- gsl_hypers.{i} done;
                Spec.Hyper.set_values kernel inducing inputs hypers hyper_vals)
            else
              (fun ~gsl_hypers ->
                let hyper_vals = Vec.create n_hypers in
                for i = 1 to n_hypers do
                  hyper_vals.{i} <- gsl_hypers.{i - 1}
                done;
                Spec.Hyper.set_values kernel inducing inputs hypers hyper_vals)
          in
          let seen_exception_ref = ref None in
          let wrap_seen_exception f =
            try f () with exc -> seen_exception_ref := Some exc; raise exc
          in
          let best_model_ref = ref None in
          let get_best_model () =
            match !best_model_ref with
            | None -> assert false  (* impossible *)
            | Some (trained, _) -> trained
          in
          let iter_count = ref 1 in
          let update_best_model trained log_evidence =
            match !best_model_ref with
            | Some (_, old_log_evidence)
              when old_log_evidence >= log_evidence -> ()
            | _ ->
                report_trained_model ~iter:!iter_count trained;
                best_model_ref := Some (trained, log_evidence)
          in
          let multim_f ~x:gsl_hypers =
            let kernel, inducing, inputs = update_hypers ~gsl_hypers in
            let eval_inducing = Eval_inducing.calc kernel inducing in
            let eval_inputs = Eval_inputs.calc inputs eval_inducing in
            let model = Eval_model.calc eval_inputs ~sigma2:!sigma2_ref in
            let trained = Eval_trained.calc model ~targets in
            let log_evidence = Eval_trained.calc_log_evidence trained in
            update_best_model trained log_evidence;
            -. log_evidence
          in
          let multim_f ~x = wrap_seen_exception (fun () -> multim_f ~x) in
          let multim_dcommon ~x:gsl_hypers ~g:gradient =
            let kernel, inducing, inputs = update_hypers ~gsl_hypers in
            let deriv_inducing = Inducing.calc kernel inducing in
            let deriv_inputs = Inputs.calc deriv_inducing inputs in
            let dmodel = Cm.calc ~sigma2:!sigma2_ref deriv_inputs in
            let trained = Trained.calc dmodel ~targets in
            if learn_sigma2 then
              let dlog_evidence_dsigma2 =
                Trained.calc_log_evidence_sigma2 trained
              in
              gradient.{0} <- -. dlog_evidence_dsigma2 *. !sigma2_ref;
              if n_hypers = 0 then ()
              else
                let hyper_t = Trained.prepare_hyper trained in
                for i1 = 1 to n_hypers do
                  gradient.{i1} <-
                    -. Trained.calc_log_evidence hyper_t hypers.(i1 - 1)
                done;
            else begin
              let hyper_t = Trained.prepare_hyper trained in
              for i = 0 to n_hypers - 1 do
                gradient.{i} <- -. Trained.calc_log_evidence hyper_t hypers.(i)
              done;
            end;
            trained
          in
          let multim_df ~x ~g = ignore (multim_dcommon ~x ~g) in
          let multim_df ~x ~g =
            wrap_seen_exception (fun () -> multim_df ~x ~g)
          in
          let multim_fdf ~x ~g =
            let deriv_trained = multim_dcommon ~x ~g in
            let trained = Trained.calc_eval deriv_trained in
            let log_evidence = Eval_trained.calc_log_evidence trained in
            update_best_model trained log_evidence;
            -. log_evidence
          in
          let multim_fdf ~x ~g =
            wrap_seen_exception (fun () -> multim_fdf ~x ~g)
          in
          let multim_fun_fdf = { Gsl.Fun.multim_f; multim_df; multim_fdf } in
          let mumin =
            Gd.make Gd.VECTOR_BFGS2 n_gsl_hypers
              multim_fun_fdf ~x:gsl_hypers ~step ~tol
          in
          let gsl_dhypers = Gsl.Vector.create n_gsl_hypers in
          let rec loop () =
            let neg_log_likelihood =
              Gd.minimum ~x:gsl_hypers ~g:gsl_dhypers mumin
            in
            check_exception seen_exception_ref neg_log_likelihood;
            let gnorm = Gsl.Blas.nrm2 gsl_dhypers in
            begin
              try report_gradient_norm ~iter:!iter_count gnorm
              with exc -> raise (Optim_exception exc)
            end;
            if gnorm < epsabs then get_best_model ()
            else begin
              incr iter_count;
              Gd.iterate mumin;
              loop ()
            end
          in
          loop ()
      end

      let calc_gradient ~learn_sigma2 ~sigma2 ~hypers ~trained =
        let n_hypers = Array.length hypers in
        let n_all_hypers = if learn_sigma2 then n_hypers + 1 else n_hypers in
        let gradient = Vec.create n_all_hypers in
        if learn_sigma2 then
          let dlog_evidence_dsigma2 =
            Trained.calc_log_evidence_sigma2 trained
          in
          gradient.{1} <- dlog_evidence_dsigma2 *. sigma2;
          if n_hypers = 0 then ()
          else
            let hyper_t = Trained.prepare_hyper trained in
            for i = 0 to n_hypers - 1 do
              gradient.{i + 2} <- Trained.calc_log_evidence hyper_t hypers.(i)
            done
        else begin
          let hyper_t = Trained.prepare_hyper trained in
          for i1 = 1 to n_hypers do
            gradient.{i1} <- Trained.calc_log_evidence hyper_t hypers.(i1 - 1)
          done
        end;
        gradient

      let make_test step gradient_norm get_trained
            ?(epsabs = 0.1) ?max_iter ?(report = ignore) t =
        let max_iter =
          match max_iter with
          | None -> -1
          | Some max_iter when max_iter < 0 ->
              failwith "Optim.SMD.test: max_iter < 0"
          | Some max_iter -> max_iter
        in
        let rec loop n ~best_le ~best ~t =
          if n = 0 || gradient_norm t < epsabs then best
          else
            let new_t = step t in
            let best_le, best =
              let new_trained = get_trained new_t in
              let new_log_evidence =
                Eval_trained.calc_log_evidence new_trained
              in
              if new_log_evidence <= best_le then best_le, best
              else begin
                report new_t;
                new_log_evidence, new_t
              end
            in
            loop (n - 1) ~best_le ~best ~t:new_t
        in
        let best_le = Eval_trained.calc_log_evidence (get_trained t) in
        loop max_iter ~best_le ~best:t ~t

      module SGD = struct
        type t = {
          learn_sigma2 : bool;
          hypers : Spec.Hyper.t array;
          tau : float;
          eta : float;
          step : int;
          hyper_vals : vec;
          trained : Trained.t;
          gradient : vec;
          gradient_norm : float;
        }

        let create
              ?(tau = 100.) ?eta0:(eta = 1e-3) ?(step = 0) ?kernel ?sigma2 ?inducing
              ?n_rand_inducing ?(learn_sigma2 = true) ?hypers
              ~inputs ~targets () =
          let loc = "Gpr.Fitc_gp.Optim.SGD.create" in
          let fail_neg0 what v =
            if v <= 0. then failwithf "%s: %s (%f) <= 0" loc what v ()
          in
          fail_neg0 "tau" tau;
          fail_neg0 "eta0" eta;
          if step < 0 then failwithf "%s: step (%d) < 0" loc step ();
          let sigma2 = get_sigma2 targets sigma2 in
          let kernel, inducing =
            get_kernel_inducing ?kernel ?n_rand_inducing ~inputs inducing
          in
          let hypers, hyper_vals =
            get_hypers_vals kernel inducing inputs hypers
          in
          let trained =
            let deriv_inducing = Inducing.calc kernel inducing in
            let deriv_inputs = Inputs.calc deriv_inducing inputs in
            let dmodel = Cm.calc ~sigma2 deriv_inputs in
            Trained.calc dmodel ~targets
          in
          let gradient = calc_gradient ~learn_sigma2 ~sigma2 ~hypers ~trained in
          let gradient_norm = nrm2 gradient in
          {
            learn_sigma2; hypers; tau; eta; step; hyper_vals;
            trained; gradient; gradient_norm
          }

        let step t =
          let
            {
              learn_sigma2; hypers; tau; eta; step;
              hyper_vals = old_hyper_vals;
              trained = old_trained;
              gradient = old_gradient;
              gradient_norm = _gradient_norm;
            } = t
          in
          let old_sigma2, old_input_points, old_inducing, old_kernel =
            let eval_trained = Trained.calc_eval old_trained in
            let eval_model = Eval_trained.get_model eval_trained in
            let input_points = Eval_model.get_input_points eval_model in
            let sigma2 = Eval_model.get_sigma2 eval_model in
            let inducing = Eval_model.get_inducing_points eval_model in
            let kernel = Eval_model.get_kernel eval_model in
            sigma2, input_points, inducing, kernel
          in
          let sigma2, hyper_ix =
            if learn_sigma2 then
              exp (log old_sigma2 +. eta *. old_gradient.{1}), 2
            else old_sigma2, 1
          in
          let hyper_vals = copy old_hyper_vals in
          axpy ~alpha:eta ~ofsx:hyper_ix old_gradient hyper_vals;
          let trained =
            let kernel, inducing, input_points =
              Spec.Hyper.set_values
                old_kernel old_inducing old_input_points hypers hyper_vals
            in
            let deriv_inducing = Inducing.calc kernel inducing in
            let deriv_inputs = Inputs.calc deriv_inducing input_points in
            let dmodel = Cm.calc ~sigma2 deriv_inputs in
            let eval_trained = Trained.calc_eval old_trained in
            let targets = Eval_trained.get_targets eval_trained in
            Trained.calc dmodel ~targets
          in
          let gradient = calc_gradient ~learn_sigma2 ~sigma2 ~hypers ~trained in
          let gradient_norm = nrm2 gradient in
          {
            t with
            hyper_vals; trained; gradient; gradient_norm;
            eta = tau /. (tau +. float step) *. eta;
            step = step + 1;
          }

        let gradient_norm t = t.gradient_norm
        let get_trained t = Trained.calc_eval t.trained
        let get_eta t = t.eta
        let get_step t = t.step

        let test = make_test step gradient_norm get_trained
      end

      module SMD = struct
        type t = {
          learn_sigma2 : bool;
          hypers : Spec.Hyper.t array;
          eps : float;
          lambda : float;
          mu : float;
          eta : vec;
          nu : vec;
          hyper_vals : vec;
          trained : Trained.t;
          gradient : vec;
          gradient_norm : float;
        }

        let create
              ?(eps = 1e-8) ?lambda ?mu ?eta0 ?nu0 ?kernel ?sigma2 ?inducing
              ?n_rand_inducing ?(learn_sigma2 = true) ?hypers
              ~inputs ~targets () =
          let loc = "Gpr.Fitc_gp.Optim.SMD.create" in
          let lambda =
            match lambda with
            | None -> 0.1
            | Some lambda when lambda < 0. || lambda > 1. ->
                failwithf "%s: violating 0 <= lambda(%f) <= 1" loc lambda ()
            | Some lambda -> lambda
          in
          let mu =
            match mu with
            | None -> 1e-3
            | Some mu when mu < 0. ->
                failwithf "%s: violating 0 <= mu(%f)" loc mu ()
            | Some mu -> mu
          in
          let sigma2 = get_sigma2 targets sigma2 in
          let kernel, inducing =
            get_kernel_inducing ?kernel ?n_rand_inducing ~inputs inducing
          in
          let hypers, hyper_vals =
            get_hypers_vals kernel inducing inputs hypers
          in
          let n_all_hypers =
            let n_hypers = Array.length hypers in
            if learn_sigma2 then n_hypers + 1 else n_hypers
          in
          let eta =
            match eta0 with
            | None -> Vec.make n_all_hypers 1e-3
            | Some eta0 ->
                let dim_eta0 = Vec.dim eta0 in
                if dim_eta0 <> n_all_hypers then
                  failwithf "%s: dim(eta0) = %d <> n_all_hypers(%d)"
                    loc dim_eta0 n_all_hypers ()
                else begin
                  for i = 1 to n_all_hypers do
                    let eta0_i = eta0.{i} in
                    if eta0_i <= 0. then
                      failwithf "%s: eta0.{%d} < 0: %f" loc i eta0_i ()
                  done;
                  eta0
                end
          in
          let nu =
            match nu0 with
            | None -> Vec.make n_all_hypers 1e-3
            | Some nu0 ->
                let dim_nu0 = Vec.dim nu0 in
                if dim_nu0 <> n_all_hypers then
                  failwithf "%s: dim(nu0) = %d <> n_all_hypers(%d)"
                    loc dim_nu0 n_all_hypers ()
                else nu0
          in
          let trained =
            let deriv_inducing = Inducing.calc kernel inducing in
            let deriv_inputs = Inputs.calc deriv_inducing inputs in
            let dmodel = Cm.calc ~sigma2 deriv_inputs in
            Trained.calc dmodel ~targets
          in
          let gradient = calc_gradient ~learn_sigma2 ~sigma2 ~hypers ~trained in
          let gradient_norm = nrm2 gradient in
          {
            learn_sigma2; hypers; eps; lambda; mu; eta; nu;
            hyper_vals; trained; gradient; gradient_norm
          }

        let step t =
          let
            {
              learn_sigma2; hypers; eps; lambda; mu;
              eta = old_eta; nu = old_nu;
              hyper_vals = old_hyper_vals;
              trained = old_trained;
              gradient = old_gradient;
              gradient_norm = _gradient_norm;
            } = t
          in
          let eval_trained = Trained.calc_eval old_trained in
          let targets = Eval_trained.get_targets eval_trained in
          let eval_model = Eval_trained.get_model eval_trained in
          let old_input_points = Eval_model.get_input_points eval_model in
          let old_sigma2 = Eval_model.get_sigma2 eval_model in
          let log_old_sigma2 = log old_sigma2 in
          let old_inducing = Eval_model.get_inducing_points eval_model in
          let old_kernel = Eval_model.get_kernel eval_model in
          let n_hypers = Array.length hypers in
          let lambda_hessian_nu =
            (* Just an approximation.  Would require algorithmic
               differentiation for practical use if exact Hessian-vector
               product is required. *)
            let calc_grad eps =
              let sigma2, hyper_ofs =
                if learn_sigma2 then
                  exp (log_old_sigma2 +. eps *. old_nu.{1}), 1
                else old_sigma2, 0
              in
              let kernel, inducing, input_points =
                let hyper_vals = Vec.create n_hypers in
                for i1 = 1 to n_hypers do
                  hyper_vals.{i1} <-
                    old_hyper_vals.{i1} +. eps *. old_nu.{i1 + hyper_ofs}
                done;
                Spec.Hyper.set_values
                  old_kernel old_inducing old_input_points hypers hyper_vals
              in
              let deriv_inducing = Inducing.calc kernel inducing in
              let deriv_inputs = Inputs.calc deriv_inducing input_points in
              let dmodel = Cm.calc ~sigma2 deriv_inputs in
              let trained = Trained.calc dmodel ~targets in
              calc_gradient ~learn_sigma2 ~sigma2 ~hypers ~trained
            in
            let res = Vec.sub (calc_grad eps) (calc_grad (-. eps)) in
            scal (lambda /. (2. *. eps)) res;
            res
          in
          let n_all_hypers = Vec.dim old_gradient in
          let eta = Vec.create n_all_hypers in
          for i = 1 to n_all_hypers do
            eta.{i} <-
              old_eta.{i} *.
                max 0.5 (1. +. mu *. old_gradient.{i} *. old_nu.{i})
          done;
          let sigma2, hyper_ix =
            if learn_sigma2 then
              exp (log_old_sigma2 +. eta.{1} *. old_gradient.{1}), 2
            else old_sigma2, 1
          in
          let hyper_vals =
            Vec.add old_hyper_vals
              (Vec.mul ~n:n_hypers eta ~ofsy:hyper_ix old_gradient)
          in
          let nu =
            Vec.mul old_eta (Vec.add old_gradient lambda_hessian_nu)
          in
          axpy ~alpha:lambda old_nu nu;
          let trained =
            let kernel, inducing, input_points =
              Spec.Hyper.set_values
                old_kernel old_inducing old_input_points hypers hyper_vals
            in
            let deriv_inducing = Inducing.calc kernel inducing in
            let deriv_inputs = Inputs.calc deriv_inducing input_points in
            let dmodel = Cm.calc ~sigma2 deriv_inputs in
            let eval_trained = Trained.calc_eval old_trained in
            let targets = Eval_trained.get_targets eval_trained in
            Trained.calc dmodel ~targets
          in
          let gradient = calc_gradient ~learn_sigma2 ~sigma2 ~hypers ~trained in
          let gradient_norm = nrm2 gradient in
          { t with eta; nu; hyper_vals; trained; gradient; gradient_norm }

        let gradient_norm t = t.gradient_norm
        let get_trained t = Trained.calc_eval t.trained
        let get_eta t = t.eta
        let get_nu t = t.nu

        let test = make_test step gradient_norm get_trained
      end

    end

(*
    module Online = struct
      module SGD = struct
        type foo =
          | Under_capacity of Trained.t
          | Max_capacity of fdsa

        type t = {
          kernel : Spec.Eval.Kernel.t;
          eta : float;
          tau : float;
          foo : foo;
        }
      end

      module SMD = struct
        type t
      end

      type t =
        | Untrained of Spec.Eval.Kernel.t
        | SGD of SGD.t
        | SMD of SMD.t

      let sgd
            ?(capacity = 10)
            ?mean_predictor:_ ?(eta0 = 0.1) ?(tau = 0.) kernel =
        (* TODO: parameter checks *)
        ignore (capacity);
        {
          SGD.
          kernel;
          eta = eta0;
          tau;
          mean_predictor;
        }

      let smd ?(capacity = 10) ?eta0 ?(mu = 0.1) ?(lam = 0.1) kernel =
        (* TODO: parameter checks *)
        ignore (capacity, eta0, mu, lam, kernel);
        (assert false (* XXX *))

      let train_sgd _sgd _input ~target:_ =
        (assert false (* XXX *))

      let train_smd _smd _input ~target:_ =
        (assert false (* XXX *))

      let train t input ~target =
        match t with
        | SGD sgd -> train_sgd sgd input ~target
        | SMD smd -> train_smd smd input ~target

      let calc_mean_predictor = function
        | Untrained kernel ->
            let inputs = Eval.Inputs.create [||] in
            let inducing = Eval.Inputs.create_inducing kernel inputs in
            {
              Eval_common.Mean_predictor.
              inducing;
              coeffs = Vec.empty;
            }
        | SGD _ ->
            (assert false (* XXX *))
        | SMD _ ->
            (assert false (* XXX *))

      let calc_co_variance_predictor _t = (assert false (* XXX *))
    end

*)
  end
end

module Make_FITC_deriv (Spec : Specs.Deriv) = struct
  include Make_common_deriv (Spec)

  module Eval = struct
    include Eval_common

    module Model = Common_model

    module Covariances = FITC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:fitc_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:fitc_loc
    end
  end

  module Deriv = struct
    include Deriv_common
    module Model = Common_model
  end
end

module Make_FIC_deriv (Spec : Specs.Deriv) = struct
  include Make_common_deriv (Spec)

  module Eval = struct
    include Eval_common

    module Model = Common_model

    module Covariances = FIC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:fic_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:fic_loc
    end
  end

  module Deriv = struct
    include Deriv_common
    module Model = Common_model
  end
end

module Make_variational_FITC_deriv (Spec : Specs.Deriv) = struct
  include Make_common_deriv (Spec)

  module Eval = struct
    include Eval_common

    module Model = Variational_model

    module Covariances = FITC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:fitc_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:fitc_loc
    end
  end

  module Deriv = struct
    include Deriv_common
    module Model = Variational_model
  end
end

module Make_variational_FIC_deriv (Spec : Specs.Deriv) = struct
  include Make_common_deriv (Spec)

  module Eval = struct
    include Eval_common

    module Model = Variational_model

    module Covariances = FIC_covariances

    module Sampler = struct
      include Common_sampler
      let calc = calc ~loc:fic_loc
    end

    module Cov_sampler = struct
      include Common_cov_sampler
      let calc = calc ~loc:fic_loc
    end
  end

  module Deriv = struct
    include Deriv_common
    module Model = Variational_model
  end
end

module Make_deriv (Spec : Specs.Deriv) = struct
  module type Sig = Sigs.Deriv
    with module Eval.Spec = Spec.Eval
    with module Deriv.Spec = Spec

  module Common_deriv = Make_common_deriv (Spec)

  module FITC = struct
    include Common_deriv

    module Eval = struct
      include Eval_common

      module Model = Common_model

      module Covariances = FITC_covariances

      module Sampler = struct
        include Common_sampler
        let calc = calc ~loc:fitc_loc
      end

      module Cov_sampler = struct
        include Common_cov_sampler
        let calc = calc ~loc:fitc_loc
      end
    end

    module Deriv = struct
      include Deriv_common
      module Model = Common_model
    end
  end

  module FIC = struct
    include Common_deriv

    module Eval = struct
      include Eval_common

      module Model = Variational_model

      module Covariances = FIC_covariances

      module Sampler = struct
        include Common_sampler
        let calc = calc ~loc:fitc_loc
      end

      module Cov_sampler = struct
        include Common_cov_sampler
        let calc = calc ~loc:fitc_loc
      end
    end

    module Deriv = struct
      include Deriv_common
      module Model = Variational_model
    end
  end

  module Variational_FITC = struct
    include Common_deriv

    module Eval = struct
      include Eval_common

      module Model = Variational_model

      module Covariances = FITC_covariances

      module Sampler = struct
        include Common_sampler
        let calc = calc ~loc:fitc_loc
      end

      module Cov_sampler = struct
        include Common_cov_sampler
        let calc = calc ~loc:fitc_loc
      end
    end

    module Deriv = struct
      include Deriv_common
      module Model = Variational_model
    end
  end

  module Variational_FIC = struct
    include Common_deriv

    module Eval = struct
      include Eval_common

      module Model = Variational_model

      module Covariances = FIC_covariances

      module Sampler = struct
        include Common_sampler
        let calc = calc ~loc:fic_loc
      end

      module Cov_sampler = struct
        include Common_cov_sampler
        let calc = calc ~loc:fic_loc
      end
    end

    module Deriv = struct
      include Deriv_common
      module Model = Variational_model
    end
  end
end